Normen, Formeln, Tabellen

	Seite
Kennbuchstaben elektrischer	
Betriebsmittel	10-2
Schutzmaßnahmen	10-4
Überstromschutz von Kabeln und Leitungen	10-12
Elektrische Ausrüstung von Maschinen	10-21
Maßnahmen zur Risikoverminderung	10-27
Schutzarten elektrischer Betriebsmittel	10-29
Gebrauchskategorien für Schaltelemente	10-34
Gebrauchskategorien für Schütze und	
Motorstarter	10-36
Gebrauchskategorien für Lasttrennschalter	10-40
Motorbemessungsströme	10-43
Leitungen	10-46
Formeln	10-54
Internationales Einheitensystem	10-58

Allgemein

"Auszüge aus DIN-Normen mit VDE-Klassifikation (kurz: DIN-VDF-Normen) sind für die angemeldete limitierte Auflage wiedergegeben mit Genehmigung 212.011 des DIN Deutsches Institut für Normung e.V. und des VDE Verband der Elektrotechnik Elektronik Informationstechnik e V. Für weitere Wiedergaben oder Auflagen ist eine gesonderte Genehmigung erforderlich. Maßgebend für das Anwenden der Normen sind deren Fassungen mit dem neuesten Ausgabedatum, die bei der VDE VER-LAG GMBH, Bismarckstr. 33, 10625 Berlin, www.vde-verlag.de und der Beuth Verlag GmbH, Burggrafenstr. 6, 10787 Berlin erhältlich sind "

Kennzeichnung nach DIN EN 81346-2 (IEC 81346-2)

Eaton wendet die o. g. Norm an.

Abweichend von der bisher üblichen Kennzeichnung bestimmt jetzt an erster Stelle die Funktion des elektrischen Betriebsmittels in der jeweiligen Schaltung den Kennbuchstaben. Daraus abgeleitet ergibt sich einiger Freiraum für die Wahl des Kennbuchstabens.

Beispiel für einen Widerstand

- · Normaler Strombegerenzer: R
- Heizwiderstand: E
- . Messwiderstand: B

Außerdem wurden bei Eaton firmenspezifische Festlegungen zur Umsetzung der Norm getroffen, die teilweise von der Norm abweichen

 Die Bezeichnungen der Anschlussklemmen werden nicht von rechts lesbar dargestellt.

- Ein zweiter Kennbuchstabe zur Kennzeichnung des Einsatzzweckes des Betriebsmittels wird nicht angegeben, z. B.: Zeitrelais K1T wird K1.
- Leistungsschalter mit der Hauptfunktion Absicherung werden weiterhin mit Q gekennzeichnet.
 Sie werden von 1 bis 10, links oben beginnend, durchnummeriert.
- Schütze werden neu mit Q gekennzeichnet und von 11 bis nn durchnummeriert.
 - z. B.: K91M wird Q21.
- Hilfsschütze bleiben K und werden von 1 bis n durchnummeriert.

Die Kennzeichnung erscheint an einer geeigneten Stelle in unmittelbarer Nähe des Schaltzeichens. Die Kennzeichnung stellt die Beziehung her zwischen dem Betriebsmittel in der Anlage und den verschiedenen Schaltungsunterlagen (Schaltplänen, Stücklisten, Stromlaufplänen, Anweisungen). Zur leichteren Wartung kann die Kennzeichnung auch ganz oder teilweise auf oder in der Nähe des Betriebsmittels angebracht werden.

Ausgewählte Betriebsmittel mit einer Gegenüberstellung der bei Eaton vergebenen Kennbuchstaben alt – neu

→ Tabelle, Seite 10-3.

Kennbuchstabe	Zweck	Beispiele für elektrische Betriebsmittel
Α	(Mehrere Zwecke)	(ohne Hauptzweck)
В	Signalerzeugung	Druckwächter, Grenztaster
С	Speicherung	Kondensatoren
D	(für später reserviert)	
E	Energielieferung	Heizwiderstand, Lampen
F	Schutz	Bimetallauslöser, Sicherungen
G	Energieversorgung	Generator, USV
Н	(für später reserviert)	
I	(nicht anzuwenden)	
J	(für später reserviert)	
K	Signalverarbeitung	Hilfsschütz, Zeitrelais
L	(für später reserviert)	
M	Antriebsenergie	Motor
N	(für später reserviert)	
0	(nicht anzuwenden)	
P	Informationsdarstellung	Melde- und Messgeräte
Q	Energie-/Signalfluss schalten	Softstarter, Schütz, Motorstarter
R	Energieflussbegrenzung	Drosselspulen, Dioden
S	Manuelle Signalerzeugung	Befehlsgeräte
Т	Energieumwandlung	Frequenzumrichter, Transformator
U	Objektfixierung	
V	Materialverarbeitung	Elektrofilter
W	Energietransport	
X	Objektverbindung	Klemme, Steckverbinder
Y, Z	(für später reserviert)	

10

Normen, Formeln, Tabellen Schutzmaßnahmen

Schutz gegen elektrischen Schlag nach IEC 60364-4-41/DIN VDE 0100-410

Hierin wird unterschieden zwischen Basisschutz (früher Schutz gegen direktes Berühren), Fehlerschutz (früher Schutz bei indirektem Berühren) und Schutz sowohl gegen direktes und bei indirektem Berühren.

Basisschutz

Das sind alle Maßnamen zum Schutz von Personen und Nutztieren vor Gefahren, die sich aus der Berührung mit aktiven Teilen elektrischer Betriebsmittel ergeben.

Fehlerschutz

Das ist der Schutz von Personen und Nutztieren, die sich im Fehlerfall aus einer Berührung mit dem Körper oder fremden leitfähigen Teilen ergeben können.

Zusätzlicher Schutz

Im Falle des Versagens von Basis- bzw. Fehlerschutz oder bei erhöhtem Gefahrenpotenzial bieten z. B. Fehlerstrom-Schutzeinrichtungen mit $I_{\triangle n} \le 30$ mA zusätzlichen Schutz.

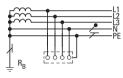
Der Schutz muss sichergestellt werden durch a) das Betriebsmittel selbst oder b) Anwendung der Schutzmaßnahmen beim Errichten oder c) eine Kombination aus a) und b).

Werden Basis-, Fehler- und zusätzlicher Schutz in geeigneter Weise kombiniert, ergeben sich folgende, in Teil 410 der DIN VDE 0100 behandelte, Schutzmaßnahmen:

- Automatische Abschaltung der Stromversorgung (0100-411)
- Doppelte oder verstärkte Isolierung (0100-412)
- Schutztrennung (0100-413)
- Kleinspannung mittels SELV oder PELV (0100-414)

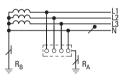
Eine der wesentlichen Änderungen der DIN VDE 0100-410 im Juni 2007 war der zusätzliche Schutz für Endstromkreise für den Außenbereich und Steckdosen (411.3.3). Danach muss ein zusätzlicher Schutz durch Fehlerstrom-Schutzeinrichtungen (RCDs) mit $I_{\triangle n} \le 30$ mA vorgesehen werden für Steckdosen ≤ 20 A sowie für Endstromkreise für im Außenbereich verwendete tragbare Betriebsmittel ≤ 32 A. Zur Erhöhung der Sicherheit ist damit die vorherige Empfehlung in eine Verpflichtung umgewandelt worden.

Schutzmaßnahme gegen indirektes Berühren mit Abschaltung oder Meldung

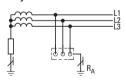

Die Abschaltbedingungen werden bestimmt durch die vorhandene Art von Verteilungssystem und die gewählte Schutzeinrichtung.

Systeme nach IEC 60364-1/DIN VDE 0100-100

Systeme nach Art der Erdverbindung


Bedeutung der Kurzzeichen

TN-System


- T: direkte Verbindung eines Punktes zur Erde
- N: direkte elektrische Verbindung der Körper (von elektrischen Betriebsmitteln) mit dem geerdeten Punkt des Stromversorgungssystems

TT-System

- T: direkte Verbindung eines Punktes zur Erde
- T: direkte elektrische Verbindung der Körper zur Erde, unabhängig von einer etwaig bestehenden Erdung des Versorgungssystems

IT-System

- Isolierung aller aktiven Teile von Erde oder Verbindung eines Punktes mit Erde über eine hohe Impedanz
- T: direkte elektrische Verbindung der Körper zur Erde, unabhängig von einer etwaig bestehenden Erdung des Versorgungssystems
- R_B Erdung an der Stromquelle
- R_A Erdung am Körper des elektrischen Betriebsmittels

Art von Verteilungssystem	TN-System	
Schutz durch	Prinzipschaltung	Abschaltbedingung
Überstrom- Schutzeinrichtung	TN-S-System getrennte Neutralleiter und Schutz-leiter im gesamten System	$\begin{split} Z_s & x \mid_a \leqq U_0 \text{ mit } \\ Z_s &= \text{Impedanz der } \\ \text{Fehlerschleife} \\ I_a &= \text{Strom, der das } \\ \text{Abschalten bewirkt } \\ \text{in (0100-411.3.2):} \\ \bullet &\leq 5 \text{ s} \\ \bullet &\leq 0.2 \text{ s} \\ U_0 &= \text{Nennspannung } \\ \text{gegen geerdeten} \end{split}$
Sicherungen, Leitungsschutz- schalter, Leistungsschalter	TN-C-System Neutralleiter- und Schutzleiterfunk- tionen im gesamten System in einem einzigen Leiter, dem PEN-Leiter zusammengefasst	Leiter
	L1 L3 PEN	

Art von Verteilungssystem	TN-System	
Schutz durch	Prinzipschaltung	Abschaltbedingung
Überstrom- Schutzeinrichtung	TN-C-S-System Neutralleiter- und Schutzleiter- funktionen in einem Teil des Systems in einem einzigen Leiter, dem PEN-Leiter zusammengefasst	
Fehlerstrom- Schutzeinrichtung	12 13 13 NPE(N)	$Z_s \times I_{\triangle n} \le U_0$ mit $I_{\triangle n} = Nennfehler-strom$ $U_0 = Grenze der$ zulässigen Berührungsspannung*: $(\le 50 \text{ V AC}, \le 120 \text{ V DC})$

^{* →} Tabelle, Seite 10-11

Art von Verteilungssystem	TT-System	
Schutz durch	Prinzipschaltung	Meldungs-/Abschalt- bedingungen
Fehlerstrom- Schutzeinrichtung (Allgemeinfall)	PEL PEL PEL	$R_A \times I_{\triangle n} \le U_L \text{ mit}$ $R_A = \text{Erdungswider-}$ stand der Erder der Körper (Summe) $I_{\triangle n} = \text{Nennfehlerstrom}$ $U_L = \text{Grenze der zuläs-}$ sigen Berührungs- spannung*: $(\le 50 \text{ V AC},$ $\le 120 \text{ V DC})$
Überstrom- Schutzeinrichtung Sicherungen, Leitungsschutz- schalter, Leistungsschalter (Sonderfall)	\$\frac{1}{2}\$ \text{be \$\frac{1}{3}\$}\$ b	$R_A \times I_a \le U_L$ mit $I_a = Strom$, der das automatische Abschalten ≤ 5 s bewirkt

^{* -&}gt; Tabelle, Seite 10-11

Art von Verteilungssystem	TT-System	
Schutz durch	Prinzipschaltung	Meldungs-/Abschalt- bedingungen
Überstrom- Schutzeinrichtung (immer mit zusätz- licher Isolations- überwachungs- einrichtung, s. u.)	12 13 13 13 14 13 14 13 14 14 14 15 15 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	$R_A \times I_d \leq U_L(1)$ $Z_S \times I_a \leq U_0(2)$ $R_A = Erdungswider-stand aller mit einem Erder verbundenen Körper I_d = Fehlerstrom im Falle des 1. Fehlers mit vernachlässigbarer Impedanz zwischen einem Außenleiter und dem Schutzleiter oder einem damit verbundenen Körper U_L = Grenze der zugssigen Berührungsspannung*: \leq 50 \text{ V AC}, \leq 120 \text{ V DC}$

^{* →} Tabelle, Seite 10-11

Art von Verteilungssystem	IT-System				
Schutz durch	Prinzipschaltung	Meldungs-/Abschalt- bedingungen			
Fehlerstrom- Schutzeinrichtung (RCD) (immer mit zusätzlicher Isolations- überwachungs- einrichtung, s. u.)		$R_A \times I_{\triangle n} \le U_L$ $I_{\triangle n} = Nennfehler-strom$			
Isolationsüber- wachungseinrich- tung (IMD)	① zusätzlicher Potenzialausgleich	Die Isolationsüberwachungseinrichtung dient dazu, den Isolationszustand aller spannungsführenden Teile gegen Erde anzuzeigen. Wird ein bestimmter Widerstand (R) unterschritten, erfolgt eine Meldung (optisch/akustisch). Die Anlage wird nicht abgeschaltet sondern bleibt so lange betriebsbereit, bis ein zweiter Erdschluss auffritt und die automatische Abschaltung erfolgt.			

^{* →} Tabelle, Seite 10-11

Die Schutzeinrichtung muss den betroffenen Teil der Anlage automatisch abschalten. Es darf an keinem Punkt der Anlage eine Berührungsspannung und Einwirkungsdauer größer als nach der Tabelle unten anstehen.

Maximale Abschaltzeiten (s) in Abhängigkeit von der Nennspannung Außenleiter gegen Erde und dem System gemäß VDE 0100-411.3.2.2

		System	
		TN max. zulässige Abschaltzeit [s]	TT max. zulässige Abschaltzeit [s]
50 V < U ₀ ≦ 120 V	AC	0,8	0,3
	DC	(s. Anmerkung)	(s. Anmerkung)
$120 \text{ V} < U_0 \le 230 \text{ V}$	AC	0,4	0,2
	DC	5,0	0,4
230 V $<$ U ₀ \le 400 V	AC	0,2	0,07
	DC	0,4	0,2
U ₀ > 400 V	AC	0,1	0,04
	DC	0,1	0,1

 \mbox{U}_0 ist jeweils die Nennspannung Außenleiter gegen Erde.

Anmerkung:

Eine Abschaltung kann aus anderen Gründen als dem Schutz gegen elektrischen Schlag gefordert sein.

10

Normen, Formeln, Tabellen Überstromschutz von Kabeln und Leitungen

Kabel und Leitungen müssen mit Überstromschutzeinrichtungen gegen zu hohe Erwärmung geschützt werden, die sowohl durch betriebsmäßige Überlastung als auch durch vollkommenen Kurzschlussschutz auftreten kann.

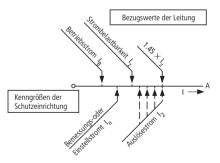
(Vertiefende Erläuterungen zur neuen DIN VDE 0100-430 enthält Band 143,

3. Auflage, der VDE-Schriftenreihe).

Schutz bei Überlast

Der Schutz bei Überlast besteht darin, Schutzeinrichtungen vorzusehen, die Überlastströme in den Leitern eines Stromkreises unterbrechen, ehe sie eine für die Leiterisolierung, die Anschluss- und Verbindungsstellen sowie die Umgebung der Leitungen und Kabel schädliche Erwägung hervorrufen können.

Zum Schutz bei Überlast von Leitungen müssen folgende Bedingungen erfüllt sein (Quelle: DIN VDE 0100-430)


$$I_B \le I_n \le I_Z$$
$$I_2 \le 1,45 I_Z$$

- I_B zu erwartender Betriebsstrom des Stromkreises
- I_Z Stombelastbarkeit der Leitung oder des Kabels
- In Nennstrom der Schutzeinrichtung

Anmerkung:

Bei einstellbaren Schutzeinrichtungen entspricht I_n dem Einstellwert.

I₂ Der Strom, der eine Auslösung der Schutzeinrichtung unter den in den Gerätebestimmungen festgelegten Bedingungen bewirkt.

Anordnung der Schutzeinrichtungen zum Schutz bei Überlast

Schutzeinrichtungen zum Schutz bei Überlast müssen am Anfang jedes Stromkreises sowie an allen Stellen eingebaut werden, an denen die Strombelastbarkeit gemindert wird, sofern eine vorgeschaltete

Schutzeinrichtung den Schutz nicht sicherstellen kann.

Anmerkung:

Ursachen für die Minderung der Strombelastbarkeit können sein:

Verringerung des Leiterquerschnittes, andere Verlegungsart, andere Leiterisolierung, andere Anzahl.

Schutzeinrichtungen zum Schutz bei Überlast sollten nicht eingebaut werden, wenn die Unterbrechung des Stromkreises eine Gefahr darstellen kann. Die Stromkreise müssen dann so ausgelegt sein, dass mit dem Auftreten von Überlastströmen nicht gerechnet werden muss.

Beispiele:

- Erregerstromkreise von umlaufenden Maschinen
- · Speisestromkreise von Hubmagneten
- Sekundärstromkreise von Stromwandlern
- · Stromkreise, die der Sicherheit dienen.

Schutz bei Kurzschluss

Der Schutz bei Kurzschluss besteht darin, Schutzeinrichtungen vorzusehen, die Kurzschlussströme in den Leitern eines Stromkreises unterbrechen, ehe sie eine für die Leiterisolierung, die Anschluss- und Verbindungsstellen sowie die Umgebung der Leitungen und Kabel schädliche Wärme hervorrufen können.

Allgemein kann die zulässige Ausschaltzeit t für Kurzschlüsse bis zu 5 s Dauer annähernd nach folgender Gleichung bestimmt werden:

$$t = \left(k \ x \ \frac{S}{I}\right)^2 \quad oder \quad I^2 x \ t \quad = \ k^2 \ x \ S^2$$

Darin bedeuten:

- t: zulässige Ausschaltzeit im Kurzschlussfall in s
- S: Leiterquerschnitt in mm²
- Effektivwert des Stromes bei vollkommenem Kurzschluss in A
- k: Konstante mit den Werten
 - 115 bei PVC-isolierten Kunferleitern
 - 76 bei PVC-isolierten Aluminiumleitern
 - 141 bei gummiisolierten Kupferleitern

- 93 bei gummiisolierten Aluminiumleitern
- 115 bei Weichlotverbindungen in Kupferleitern
- Weitere Werte f
 ür k sind in Tabelle 43A der DIN VDE 0100-430 enthalten.

Bei sehr kurzen zulässigen Ausschaltzeiten (< 0,1 s) muss das aus der Gleichung zu ermittelnde Produkt k² x S² größer sein als der vom Hersteller angegebene l² x t-Wert der strombegrenzenden Schutzeinrichtung.

Anordung der Schutzeinrichtungen für den Schutz bei Kurzschluss

Schutzeinrichtungen für den Schutz bei Kurzschluss müssen am Anfang jedes Stromkreises sowie an allen Stellen eingebaut werden, an denen die Kurzschlussstrom-Belastbarkeit gemindert wird, sofern eine vorgeschaltete Schutzeinrichtung den geforderten Schutz bei Kurzschluss nicht sicherstellen kann.

Anmerkung:

Ursachen für die Minderung der Kurzschlussstrom-Belastbarkeit können sein: Verringerung des Leiterquerschnittes, andere Leiterisolierung.

Auf den Kurzschlussschutz muss in allen Fällen verzichtet werden, wo eine Unterbrechung des Stromkreises eine Gefahr darstellen kann. In diesen Fällen müssen zwei Anforderungen erfüllt sein:

- Das Kabel ist so verlegt, dass das Kurzschlussrisiko auf ein Minimum reduziert ist.
- Das Kabel ist nicht in der Nähe brennbarer Materialien verlegt.

Schutz der Außenleiter und des Neutralleiters (Mittelleiters)

Schutz der Außenleiter

Überstromschutzeinrichtungen sind in allen Außenleitern vorzusehen: sie müssen die Abschaltung des Leiters, in dem der Strom auftritt, bewirken, nicht aber unbedingt auch die Abschaltung der übrigen aktiven Leiter.

Anmerkung:

Wenn die Abschaltung eines einzigen Außenleiters eine Gefahr verursachen kann, z. B. bei Drehstrommotoren, muss eine geeignete Vorkehrung getroffen werden. Motorschutzschalter und Leistungsschalter schalten stets 3-polio ab.

Schutz des Neutralleiters in

 Anlagen mit direkt geerdetem Sternpunkt (TN- oder TT-Systeme)
 Ist der Querschnitt des Neutralleiters geringer als der der Außenleiter, so ist eine seinem Querschnitt angemessene Überstromerfassung im Neutralleiter vorzusehen; diese Überstromerfassung muss die Abschaltung der Außenleiter, jedoch nicht unbedingt die des Neutralleiters

Es ist jedoch zulässig, auf eine Überstromerfassung im Neutralleiter zu verzichten, wenn

- der Neutralleiter durch die Schutzeinrichtung der Außenleiter des Stromkreises bei Kurzschluss geschützt wird und
- der Höchststrom, der den Neutralleiter durchfließen kann, bei normalem Betrieb beträchtlich geringer ist als der Wert der Strombelastbarkeit dieses Leiters.

Anmerkung:

Diese zweite Bedingung ist erfüllt, wenn die übertragene Leistung möglichst gleichmäßig auf die Außenleiter aufgeteilt ist, z. B. wenn die Summe der Leistungsaufnahme der zwischen Außenleiter und Neutralleiter angeschlossenen Verbrauchsmittel, wie Leuchten und Steckdosen, sehr viel kleiner ist als die gesamte über den Stromkreis übertragene Leistung.

bewirken.

Anlagen mit nicht direkt geerdetem Sternpunkt (IT-System)

Wenn das Mitführen des Neutralleiters erforderlich ist, muss im Neutralleiter jedes Stromkreises eine Überstromerfassung vorgesehen werden, die die Abschaltung aller aktiven Leiter des betreffenden Stromkreises (einschließlich des Neutralleiters) bewirkt.

Auf diese Überstromerfassung darf jedoch verzichtet werden, wenn der betrachtete Neutralleiter durch eine vorgeschaltete Schutzeinrichtung, z. B. in der Einspeisung der Anlage, bei Kurzschluss geschützt ist.

Abschalten des Neutralleiters

Wenn die Abschaltung des Neutralleiters vorgeschrieben ist, muss die verwendete Schutzeinrichtung so beschaffen sein, dass der Neutralleiter in keinem Fall vor den Außenleitern ausgeschaltet und nach diesen wieder eingeschaltet werden kann. 4-polige Leistungsschalter NZM erfüllen stets diese Bedingungen.

nach DIN VDE 02	nach DIN VDE 0298-4, bei 25 °C Umgebungstemperatur	emperatur			
Kabel und Leitungsbauart	NYM, NYBUY, NHYRUZY, NYIF, HOTV-U, HOTV-R, HOTV-K, NYIFY	r, NYIF, c, NYIFY			NYY, NYCWY, NYKY, NYM, NYMZ, NYMT, NYBUY, NHYRUZY
Verlegeart	A1	B1	B2	ú	ш
	in wärmedämmenden Wänden im Elektroin-	in Elektroinstallationsrohren	tionsrohren	auf einer Wand	frei in Luft
	stallationsrohr in der Wand	Aderleitungen	Mehradrige Lei- tungen		
					p 80 %
	Mehradrige Leitung in der Wand	Aderleitungen im Elektroin- stallationsrohr auf der Wand	Mehradrige Leitung im Elektroinstalla- tionsrohr auf der Wand	Ein- oder mehr- adrige Kabel oder ummantelte Installations- leitungen	Mehradrige Kabel oder ummantelte Installa- tionsleitungen mit einem Mindestabstand von 0,3 x Durchmesser d zur Wand
Anzahl der	2 3	2 3	2 3	2 3	2 3
	Strombelastbarkeit I ₂ in A bei 25 °C Umgebungstemperatur und 70 °C Betriebs- temneratur.	A bei 25 °C und 70 °C Betriebs-			

Fortsetzung

3 2 3 2 3 2 3 1 1 1 1 1 1 1 1 1	B1	B1			B2	B2	B2	B2			4		o ,				ш			
1/2 1/2 <td>3 2 3</td> <td></td> <td>2 3</td> <td>2 3</td> <td>3</td> <td>3</td> <td></td> <td></td> <td>2</td> <td></td> <td>င</td> <td></td> <td>2</td> <td></td> <td>က</td> <td></td> <td>2</td> <td></td> <td>3</td> <td></td>	3 2 3		2 3	2 3	3	3			2		င		2		က		2		3	
1, 1,<																				
17,5 16 16 13 21 20 18,5 16 23 20 19,5 24 20 21 20 25 25 25 25 25 27 27 32 25 29 25 38 35 34 32 40 36 37 40 35 36 36 40 43 40 44 60 46 55 50 46 67 60 80 81 80 1	lı lz lı lz lı lz lı	l 12 In 12	zl "l zl	z u	, z				z_	_=	_z	_=	_z		_z	_5	_z	_=		
24 20 21 20 28 25 26 26 26 27 32 32 37 32 40 32 40 32 40 32 40 32 40 32 40 32 40 32 40 32 40 32 40 32 40 32 40 40 32 40<	16,5 16 14,5 13 18,5 16 16,5 1	13 18,5 16 16,5	18,5 16 16,5	16 16,5	16,5		1	16	17,5	16	16	13	21	20	18,5	16	23	20	19,5	16
32 25 28 35 34 32 40 43 40 43 40 43 40 44 40 44 44 44 44 44 46 44 40 44 40 44 40 44 40 44 50 46 46 44 50 46 46 50 46 46 50 46 46 50 46 46 50 46 46 50 40 50 40 40 50 40 40 50 40 40 50 40 40 50 40 40 40 50 40 40 40 50 40 40 40 50 40 40 40 50 40<	20 19,5 16 25 25 22 2	16 25 25 22	25 25 22	25 22	22		2	0	24	20	21	20	29		25	25	32	32	27	25
40 35 36 35 49 40 43 40 54 50 64 63 60 63 40 63 60 63 74 63 64 73 63 66 63 90 80 81 80 100 100 85 95 80 86 63 90 80 81 80 100 100 100 85 118 100 105 106 106 106 125 126 126 126 127 107 141 125 125 126 126 126 126 126 126 126 126 126 126 127 126	28 25 25 25 34 32 30 29	25 34 32 30	34 32 30	32 30	30		2		32	22	53	25	38	i I	34	32	42	40	36	35
55 60 49 50 67 63 60 63 74 63 64 67 63 60 63 74 63 64 64 63 64 63 60 80 81 80 100 100 80 85 80 110 100 100 100 80 81 80 100 100 80 80 80 80 80 80 100 100 100 100 80 80 100 100 100 100 80 80 100 100 100 100 80<	36 35 33 32 43 40 38 3	32 43 40 38	43 40 38	40 38	38		က	2	40	32	36	32	49	l	43	40	54	20	46	40
73 63 66 63 90 80 81 80 100 100 86 95 80 86 80 119 100 102 106 126 125 107 118 100 106 106 106 146 126 126 126 126 127 134 141 125 126 126 126 126 126 160 162 178 160 168 126 224 195 160 246 224 206 213 200 160 273 250 226 224 236 246 256 256 46 224 280		40 60 50 53	60 50 53	50 53	23		2		22	20	49	20	29	i I	99	63	74	83	64	63
95 80 85 80 119 100 102 105 105 105 105 107 118 100 105 100 146 125 126 127 126 127 134 141 125 125 126 178 160 153 126 191 160 162 178 160 188 125 224 195 160 246 224 206 213 200 190 160 273 250 226 224 299 250 252 246 224 218 200 317 315 215 250 386 315 283		50 81 80 72	81 80 72	80 72	72	! 	9	3	73	63	99	63	06		81	80	100	100	82	80
100 105 106 146 125 126 125 157 157 158 158 125 125 125 178 160 153 125 191 160 162 160 158 126 224 195 160 246 224 208 200 190 160 273 250 226 224 299 250 252 24 218 200 317 315 215 250 348 315 238	1	63 107 100 94	107 100 94	100 94	94	i I	ω.	88	92	8	82	80	119		102	100	126	125	107	100
141 125 125 126 126 126 126 126 126 126 126 126 126 126 126 224 195 160 <td>105 100 94 80 133 125 117 1</td> <td>80 133 125 117</td> <td>133 125 117</td> <td>125 117</td> <td>117</td> <td>1</td> <td>1</td> <td>8</td> <td>118</td> <td>100</td> <td>105</td> <td>100</td> <td>146</td> <td></td> <td>126</td> <td>125</td> <td>157</td> <td>125</td> <td>134</td> <td>125</td>	105 100 94 80 133 125 117 1	80 133 125 117	133 125 117	125 117	117	1	1	8	118	100	105	100	146		126	125	157	125	134	125
178 160 158 125 226 224 195 160 246 224 224 36 213 200 190 160 273 250 236 224 299 250 252 246 224 218 200 317 315 215 250 348 315 293		100 160 160 142	160 160 142	160 142	142		_	25	141	125	125	125	178		153	125	191	160	162	160
213 200 190 160 273 250 236 224 299 250 252 252 246 224 218 200 317 315 275 250 348 315 293	200 181	125 204 200 181	204 200 181	200 181	181		1	09	178	160	158	125	226		195	160	246	224	208	200
246 224 218 200 317 315 275 250 348 315 293	193 160 174 160 246 224 219 21	160 246 224 219	246 224 219	224 219	219	l I	7	00	213	200	190	160	273		236	224	299	250	252	250
	223 200 199 160 285 250 253 2	160 285 250 253	285 250 253	250 253	253		2	20	246	224	218	200	317		275	250	348	315	293	250

Mindestquerschnitte für Schutzleiter nach DIN VDE 0100-540

		Schutzleiter oder F	PEN-Leiter ¹⁾	Schutzleiter ³⁾ getrennt verlegt	
Auß	enleiter	Isolierte Stark- stromleitungen	0,6/1-kV- Kabel mit 4	geschützt	ungeschützt ²⁾
mm ²	!	mm²	mm²	mm² Cu Al	mm² Cu
bis	0,5	0,5	-	2,5 4	4
	0,75	0,75	_	2,5 4	4
	1	1	_	2,5 4	4
	1,5	1,5	1,5	2,5 4	4
	2,5	2,5	2,5	2,5 4	4
	4	4	4	4 4	4
	6	6	6	6 6	6
	10	10	10	10 10	10
	16	16	16	16 16	16
	25	16	16	16 16	16
	35	16	16	16 16	16
	50	25	25	25 25	25
	70	35	35	35 35	35
	95	50	50	50 50	50
	120	70	70	70 70	70
	150	70	70	70 70	70
	185	95	95	95 95	95
	240	-	120	120 120	120
	300	-	150	150 150	150
	400	-	185	185 185	185

¹⁾ PEN-Leiter ≥ 10 mm² Cu oder 18 mm² Al.

 $^{^{2)}}$ Ungeschütztes Verlegen von Leitern aus Aluminium ist nicht zulässig.

³⁾ Ab einem Querschnitt des Außenleiter von ≥ 95 mm² vorzugsweise blanke Leiter anwenden.

Umrechnungsfaktoren

Bei Temperaturen für die umgebende Luft anders als 30°C; anzuwenden für die Strombelastbarkeit von Leitungen oder Kablen frei in Luft nach DIN VDE 0298-4, Tabelle 17.

Isolierwerkstoff ¹⁾	NR/SR	PVC	EPR		
Zulässige Betriebstemperatur	60 °C	70 °C	80 °C		
Umgebungstemperatur °C	Umrechnungsfa	ktoren			
10	1,29	1,22	1,18		
15	1,22	1,17	1,14		
20	1,15	1,12	1,10		
25	1,08	1,06	1,05		
30	1,00	1,00	1,00		
35	0,91	0,94	0,95		
40	0,82	0,87	0,89		
45	0,71	0,79	0,84		
50	0,58	0,71	0,77		
55	0,41	0,61	0,71		
60	_	0,50	0,63		
65	_	0,35	0,55		
70	_	-	0,45		
75	_	_	0,32		

¹⁾ bei höheren Umgebungstemperaturen nach Herstellerangaben

Umrechnungsfaktoren nach DIN VDE 0298-4, Tabelle 21

Häufung von mehreren Stromkreisen

Anordnung Anzahl der Stromkreise										
		1	2	3	4	6	9	12	16	20
1	Gebündelt oder umschlossen	1,00	0,80	0,70	0,65	0,57	0,50	0,45	0,41	0,38
2	Verlegt auf Wänden oder Fußböden	1,00	0,85	0,79	0,75	0,72	0,70	0,70	0,70	0,70
3	Verlegt unter Decken	0,95	0,81	0,72	0,68	0,64	0,61	0,61	0,61	0,61

Umrechnungsfaktoren für die Häufung von mehradrigen Kabeln oder Leitungen auf Kabelwannen und -pritschen sowie für weitere Fälle finden sich in der DIN VDE 0298-4, Tabellen 22 bis 27.

Anwendung von DIN EN 60204-1 (VDE 0113-1)

Diese Norm ist für die elektrische Ausrüstung von Maschinen anzuwenden, sofern für den auszurüstenden Maschinentyp keine Produktnorm (Typ C) existiert.

Durch die Kopfzeile "Sicherheit von Maschinen" werden die Sicherheitsanforderungen zum Schutz von Menschen, Maschinen und Material im Sinne der EU-Maschinenrichtlinie hervorgehoben. Der Grad der möglichen Gefährdung ist durch eine Risikobewertung abzuschätzen. Weiterhin enthält die Norm Anforderungen an Betriebsmittel, Projektierung und Aufbau sowie Prüfungen zur Sicherstellung der Schutzmaßnahmen und der einwandfreien Funktion. Die nachstehenden Abschnitte bilden einen Auszug aus der Norm.

Netz-Trenneinrichtung (Hauptschalter)

Jede Maschine muss mit einer handbetätigten Netz-Trenneinrichtung ausgerüstet
werden. Es muss möglich sein, mit der
Netz-Trenneinrichtung die gesamte elektrichten Ausrüstung der Maschine vom Netz
zu trennen. Das Ausschaltvermögen muss
ausreichend sein, um gleichzeitig den
Strom des größten Motors an der

Maschine im festgebremsten Zustand und die Summe der Ströme aller übrigen Verbraucher im Normalbetrieb abschalten zu können.

Die AUS-Stellung muss verschließbar sein. Erst nach Erreichen der vorgeschriebenen Luft- und Kriechstrecken zwischen allen Schaltstücken darf die AUS-Stellung angezeigt werden. Die Netz-Trenneinrichtung darf nur eine EIN- und AUS-Stellung mit zugeordneten Anschlägen haben. Stern-Dreieck-Schalter, Wende- und Polumschalter sind daher nicht zugelassen.

Die Ausgelöst-Stellung von Leistungsschaltern gilt nicht als Schaltstellung, daher besteht keine Einschränkung für den Einsatz als Netz-Trenneinrichtung.

Bei mehreren Einspeisungen muss jede eine Netz-Trenneinrichtung haben. Gegenseitige Verriegelungen sind vorzusehen, wenn durch das Ausschalten nur einer Netz-Trenneinrichtung eine Gefahr entstehen kann. Als fernbetätigte Schalter dürfen nur Leistungsschalter eingesetzt werden. Sie müssen mit einer zusätzlichen Handhabe versehen und in AUS-Stellung verschließhar sein.

Schutz gegen elektrischen Schlag

Zum Schutz von Personen gegen elektrischen Schlag müssen Maßnahmen vorgesehen werden und zwar:

Basisschutz – Schutz gegen direktes Berühren

Hierunter ist der Schutz durch ein Gehäuse zu verstehen, das nur Fachkräfte mit Schlüssel oder Werkzeug öffnen können. Vor dem Öffnen muss die Fachkraft die Netz-Trenneinrichtung nicht zwingend ausschalten. Aktive Teile müssen jedoch entsprechend DIN EN 50274 oder VDE 0660-514 gegen direktes Berühren geschützt werden.

Bei Verriegelung der Netz-Trenneinrichtung mit der Tür entfallen die Einschränkungen des vorhergehenden

Abschnitts, da die Tür nur bei ausgeschalteter Netz-Trenneinrichtung geöffnet werden kann. Eine Elektrofachkraft darf die Verriegelung mit einem Werkzeug aufhehen können, etwa um einen Fehler zu suchen. Bei aufgehobener Verriegelung muss es weiterhin möglich sein, die Netz-Trenneinrichtung auszuschalten.

Soll ein Gehäuse ohne Verwendung eines Schlüssels und ohne Abschalten der Netz-Trenneinrichtung geöffnet werden können, müssen alle aktiven Teile mindestens der Schutzart IP 2X oder IP XXB nach DIN EN 60529; VDE 0470-1 entsprechen.

Fehlerschutz – Schutz bei indirektem Berühren

Hierbei soll verhindert werden, dass durch einen Isolationsfehler eine gefährliche Berührungsspannung ansteht. Zur Erfüllung dieser Forderung sind die Schutzmaßnahmen nach IEC 60364-4-410; VDE 0100-410 anzuwenden

Schutz der Ausrüstung

Schutz bei Spannungsausfall

Bei Wiederkehr der Spannung nach einem Netzausfall dürfen Maschinen oder Teile von Maschinen nicht selbsttätig anlaufen, wenn das zu einem gefährlichen Zustand oder zu einem Sachschaden führen kann. Mit Schützsteuerungen kann man diese Forderung durch Selbsthalteschaltungen leicht erfüllen.

Bei Schaltungen mit Dauerkontaktgabe kann ein zusätzliches Hilfsschütz mit Impulskontaktgabe in der Zuleitung des Steuerstromkreises diese Aufgabe übernehmen. Aber auch Netz-Trenneinrichtung und Motorschutzschalter mit Unterspannungsauslöser verhindern zuverlässig den selbsttätigen Anlauf nach Spannungswiederkehr.

Überstromschutz

Für ankommende Netzanschlussleitungen braucht man im Normalfall keine Überstromschutzeinrichtung. Der Überstromschutz wird von der Schutzeinrichtung am Anfang der Zuleitung übernommen. Alle anderen Stromkreise müssen durch

Sicherungen oder Leistungsschalter geschützt werden.

Für Sicherungen besteht die Forderung, dass sie sich im Einsatzland ersetzen lassen. Diese Schwierigkeit lässt sich durch den Einsatz von Leistungsschaltern umgehen, die zudem noch weitere Vorteile wie allpoliges Freischalten, schnelle Wiedereinschaltbereitschaft und Verhinderung von Einphasenlauf bieten.

Überlastschutz von Motoren

Motoren über 0,5 kW für Dauerbetrieb müssen gegen Überlast geschützt werden. Für alle anderen Motoren wird der Überlastschutz empfohlen. Motoren, die häufig anlaufen und abgebremst werden, sind schwierig zu schützen und benötigen oft eine besondere Schutzeinrichtung. Für Motoren mit beeinträchtigter Kühlung sind eingebaute Thermofühler besonders geeignet. Zusätzlich empfiehlt sich stets der Einbau von Bimetall-Motorschutzrelais, insbesondere als Schutz bei Läuferblockierung.

Steuerfunktionen im Fehlerfall

Durch Fehler in der elektrischen Ausrüstung darf es nicht zu gefährlichen Zuständen oder Schäden kommen. Gefahren müssen durch geeignete Maßnahmen in ihrer Entstehung verhindert werden. Der Aufwand für entsprechende Maßnahmen kann sehr groß und teuer werden, wenn sie generell vorgesehen werden. Eine Abschätzung der Höhe des Risikos in Verbindung mit dem jeweiligen Einsatz bietet die Norm DIN EN ISO 13849-1 "Sicherheit von Maschinen, Sicherheitsbezogene Teile von Steuerungen, Teil 1: Allgemeine Gestaltungsleitsätze".

Die Anwendung der Risikoabschätzung nach DIN EN ISO 13849-1 wird im Sicherheitshandbuch "Sicherheitstechnik an Maschinen und Anlagen" von Eaton behandelt (Best.-Nr. PU05907001Z).

NOT-AUS-Einrichtung

Jede Maschine, von der eine Gefährdung ausgehen kann, muss mit einer NOT-AUS-Einrichtung versehen werden. Dieses Stillsetzen kann hauptstrommäßig ein NOT-AUS-Schalter oder steuerstrommäßig ein NOT-AUS-Befehlsgerät erledigen.

Bei Betätigung der NOT-AUS-Einrichtung sollen alle die Stromverbraucher durch Entregen mittelbar abgeschaltet werden, die unmittelbar zu einer Gefährdung führen können. Sie dürfen wahlweise auf elektromechanische Geräte wie Leistungsschütze, Hilfsschütze oder auf den Unterspannungsauslöser der Netz-Trenneinrichtung wirken.

NOT-AUS-Befehlsgeräte müssen bei unmittelbare Handbetätigung einen Pilzdruckkopf haben. Die Schaltstücke müssen zwangsläufig öffnen. Nach Betätigen des NOT-AUS-Befehlsgerätes darf die Maschine erst nach Entriegeln vor Ort wieder eingeschaltet werden können. Das Entriegeln allein darf keinen Wiederanlauf bewirken.

Für NOT-AUS-Schalter und NOT-AUS-Befehlsgeräte gilt weiterhin:

- Die Handhabe muss rot und mit der Kontrastfarbe gelb unterlegt sein.
- NOT-AUS-Einrichtungen müssen im Gefahrenfall schnell und leicht erreichbar sein.
- NOT-AUS muss Vorrang gegenüber allen anderen Funktionen und Betätigungen haben.
- Die Funktionsfähigkeit ist durch Prüfungen festzustellen, besonders bei erschwerten Umgebungsbedingungen.
- Bei Unterteilung in mehrere NOT-AUS-Bereiche muss die Zuordnung erkennbar sein.

Handlungen im Notfall

Welche Funktionen hiermit ausgeführt werden, geht aus dem Begriff NOT-AUS nicht hervor. Um hier präziser formulieren zu können, werden in der DIN EN 60204-1 zwei Einzelfunktionen beschrieben:

- 1. Geräte für NOT-HALT
- Hierbei handelt es sich um die Möglichkeit, gefahrbringende Bewegungen so schnell wie möglich stillzusetzen.
- 2. Geräte für NOT-AUS

Besteht die Gefahr eines elektrischen Schlages durch direktes Berühren, z. B. mit aktiven Teilen in elektrischen Betriebsräumen, so ist ein Gerät zum Ausschalten im Notfall vorzusehen

Kennfarben für Drucktaster und ihre Bedeutung

nach DIN EN 60073; VDE 0199

DIN EN 60204-1; VDE 0113-1, Tabelle 2

Farbe	Bedeutung	Typische Anwendung
ROT	Notfall	NOT-AUS Brandbekämpfung
GELB	Anormal	Eingriff, um unnormale Bedingungen zu unterdrücken oder unerwünschte Änderungen zu vermeiden
BLAU	Zwingend	Rückstellfunktion
GRÜN	Normal	Start aus sicherem Zustand
WEISS	keine spezielle Bedeutung zugeordnet	• Start/EIN (bevorzugt) • Stopp/AUS
GRAU		• Start/EIN • Stopp/AUS
SCHWARZ		Start/EIN Stopp/AUS (bevorzugt)

Kennfarben für Anzeigeleuchten und ihre Bedeutung

nach DIN EN 60073; VDE 0199 DIN EN 60204-1; VDE 0113-1, Tabelle 4

Farbe	Bedeutung	Erläuterung	Typische Anwendung
ROT	Notfall	Warnung vor möglicher Gefahr oder Zuständen, die ein sofortiges Eing- reifen erfordern	Ausfall des Schmiersystems Temperatur außerhalb vorgegebener (sicherer) Grenzen wesentliche Teile der Ausrüstung durch Ansprechen einer Schutzeinrichtung gestoppt
GELB	Anormal	bevorstehender kritischer Zustand	Temperatur (oder Druck) abweichend vom Normalwert Überlast, deren Dauer nur innerhalb beschränk- ter Zeit zulässig ist
BLAU	Zwingend	Handlung durch den Bediener erforderlich	Hindernis entfernen auf Vorschub umschalten
GRÜN	Normal	Anzeige sicherer Betriebsverhältnisse oder Freigabe des weiteren Betriebsablaufes	Kühlflüssigkeit läuft automatische Kessel- steuerung eingeschaltet Maschine fertig zum Start
WEISS	Neutral	jede Bedeutung: darf angewendet werden, wenn nicht klar ist, welche der Farben ROT, GELB oder GRÜN die geeignete wäre; oder als Bestä- tigung	Motor läuft Anzeige von Betriebsarten

Kennfarben für Leuchtdrucktaster und ihre Bedeutung

Bei Leuchtdrucktastern gelten beide Tabellen, die erste Tabelle steht für die Funktion der Tasten.

Sicherheitstechnische Kenngrößen nach EN ISO 13849-1 und IEC 62061

Ein sicherheitsgerichtetes Teilsystem kann aus einer oder mehreren Komponenten zusammengesetzt werden. Für eine Bewertung des sicherheitsgerichteten Teilsystems einer Steuerung nach EN ISO 13849-1 und IEC 62061 werden Kennwerte benötigt, die vom Komponenten-Hersteller angegeben werden.

Eaton stellt die Kennwerte aller sicherheitsrelevanten Komponenten im Bereich Safety Technology zur Verfügung.

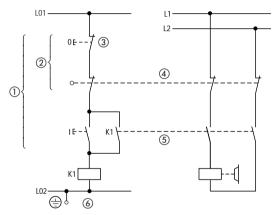
Zuverlässigkeitswerte nach EN ISO 13849-1:

B10d	Anzahl der Schaltspiele, bis 10 % der getesteten Geräte gefährlich ausgefallen sind
MTTFd	Mean Time To Dangerous Failure. Mittelwert der erwarteten Zeit bis zu einem gefährlichen Ausfall
PL	Performance Level

Zuverlässigkeitswerte nach IEC 62061:

B10	Anzahl der Schaltspiele, bis 10 % der getesteten Geräte ausgefallen sind
PFHd	Probability of a Dangerous Failure per Hour. Wahrscheinlichkeit eines gefährlichen Ausfalls pro Stunde
SIL CL	Safety Integrity Level Claim Limit. SIL-Anspruchsgrenze für ein Teilsystem.

Nähere Einzelheiten entnehmen Sie bitte der Übersicht der sicherheitstechnischen Kenngrößen für Komponenten:


http://www.moeller.net/binary/bl_supplements/bl8896de.pdf

Normen, Formeln, Tabellen Maßnahmen zur Risikoverminderung

Risikoverminderung im Fehlerfall

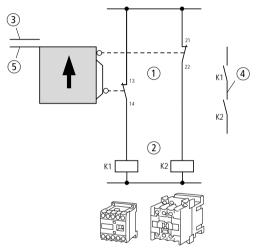
Durch Fehler in der elektrischen Ausrüstung darf es nicht zu gefährlichen Zuständen oder Schäden kommen. Gefahren müssen durch geeignete Maßnahmen in ihrer Entstehung verhindert werden.

Verwendung von erprobten Schaltungstechniken und Bauteilen

- Alle Schaltfunktionen auf der nicht geerdeten Seite
- ② Verwendung von Schalteinrichtungen mit zwangsläufig öffnenden Kontakten (nicht zu verwechseln mit zwangsgeführten Kontakten)
- 3 Stillsetzen durch Entregung (drahtbruchsicher)
- 4 Schaltungstechnische Maßnahmen, die unerwünschte Betriebszustände im Fehlerfall unwahrscheinlich machen (hier gleichzeitige Unterbrechung durch Schütz und Grenztaster)
- Schalten aller aktiven Leiter zu dem zu steuernden Gerät.

 Masseverbindung der Steuerstromkreise für Betriebszwecke (dient nicht als Schutzmaßnahme)

Redundanz


Bedeutet das Vorhandensein von einem zusätzlichen Gerät oder System, das im Fehlerfall die Funktion übernimmt.

10

Normen, Formeln, Tabellen Maßnahmen zur Risikoverminderung

Diversität

Aufbau von Steuerstromkreisen nach verschiedenen Funktionsprinzipien oder mit unterschiedlichen Arten von Geräten.

- 1) Funktionelle Diversität durch Kombination von Öffner und Schließer
- Gerätediversität durch Verwendung unterschiedlicher Gerätearten (hier unterschiedliche Hilfsschütztypen)
- $\ \ \, \textbf{3} \ \, \textbf{Schutzeinrichtung offen}$
- 4 Rückführkreis
- (5) Schutzeinrichtung geschlossen

Funktionsprüfungen

Von Hand oder automatisch kann die einwandfreie Funktion der Betriebsmittel geprüft werden.

Schutzarten elektrischer Betriebsmittel durch Gehäuse, Abdeckungen und dergleichen nach DIN EN 60529; VDE 0470-1)

Die Schutzarten für den Schutz von elektrischen Betriebsmitteln durch entsprechende Kapselung werden durch ein Kurzzeichen angegeben, das aus den Buchstaben IP und zwei Kennziffern besteht. Die erste Kennziffer gibt den Berührungs- und Fremdkörperschutz und die zweite Kennziffer den Wasserschutz an.

Berührungs- und Fremdkörperschutz

Erste Kenn-	Schutzumfang	
ziffer	Benennung	Erklärung
0	Kein Schutz	Kein besonderer Schutz von Personen gegen zufälliges Berühren unter Spannung stehender oder sich bewegender Teile. Kein Schutz des Betriebsmittels gegen Eindringen von festen Fremdkörpern.
1	Schutz gegen Fremdkörper ≧ 50 mm	Geschützt gegen den Zugang zu gefährlichen Teilen mit dem Handrücken. Die Zugangssonde, Kugel 50 mm Durchmesser, muss ausreichend Abstand von gefährlichen Teilen haben. Die Objektsonde, Kugel 50 mm Durchmesser, darf nicht voll eindringen.
2	Schutz gegen Fremdkörper ≧ 12,5 mm	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Finger. Der gegliederte Prüffinger, 12 mm Durchmesser und 80 mm Länge, muss ausreichend Abstand von gefähr- lichen Teilen haben. Die Objektsonde, Kugel 12,5 mm Durchmesser, darf nicht voll eindringen.

Berührungs- und Fremdkörperschutz							
Erste Kenn-	Schutzumfang						
ziffer	Benennung	Erklärung					
3	Schutz gegen Fremdkörper ≧ 2,5 mm	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Werkzeug. Die Zugangssonde, 2,5 mm Durchmesser, darf nicht eindringen. Die Objektsonde, 2,5 mm Durchmesser, darf überhaupt nicht eindringen.					
4	Schutz gegen Fremdkörper ≧ 1 mm	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Die Zugangssonde, 1,0 mm Durchmesser, darf nicht eindringen. Die Objektsonde, 1,0 mm Durchmesser, darf überhaupt nicht eindringen.					
5	Schutz gegen Staub- ablagerung	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Die Zugangssonde, 1,0 mm Durchmesser darf nicht eindringen. Eindringen von Staub ist nicht vollständig verhindert, aber Staub darf nicht in einer solchen Menge eindringen, dass das zufriedenstellende Arbeiten des Gerätes oder die Sicherheit beeinträchtigt wird.					
6	Schutz gegen Staubeintritt	Geschützt gegen den Zugang zu gefährlichen Teilen mit einem Draht. Die Zugangssonde, 1,0 mm Durchmesser darf nicht eindringen. Kein Eindringen von Staub.					

Beispiele für die Angabe einer Schutzart:	IP	4	4
Kennbuchstaben			
Erste Kennziffer			
Zweite Kennziffer			

Für Wasserschutz						
Zweite Kenn-	Schutzumfang					
ziffer	Benennung	Erklärung				
0	Kein Schutz	Kein besonderer Schutz				
1	Schutz gegen senkrecht fallendes Tropfwasser	Wassertropfen, die senkrecht fallen, dürfen keine schädliche Wirkung haben.				
2	Schutz gegen Tropfwasser, bei bis zu 15° Gehäuse- neigung	Senkrecht fallende Tropfen dürfen keine schädlichen Wirkungen haben, wenn das Gehäuse um einen Winkel von 15° beiderseits der Senkrechten geneigt ist.				
3	Schutz gegen Sprühwasser	Wasser, das in einem beliebigen Winkel bis 60° beider- seits der Senkrechten gesprüht wird, darf keine schädliche Wirkung haben.				
4	Schutz gegen Spritzwasser	Wasser, das aus allen Richtungen gegen das Gehäuse spritzt, darf keine schädliche Wirkung haben.				
5	Schutz gegen Strahlwasser	Ein Wasserstrahl aus einer Düse, der aus allen Rich- tungen gegen das Betriebsmittel gerichtet wird, darf keine schädliche Wirkung haben.				
6	Schutz gegen starkes Strahlwasser	Wasser, das aus jeder Richtung als starker Strahl gegen das Gehäuse gerichtet ist, darf keine schädliche Wirkung haben.				
7	Schutz beim zeitweiligen Untertauchen	Wasser darf nicht in schädlichen Mengen eindringen, wenn das Betriebsmittel unter genormten Druck- und Zeitbedingungen in Wasser eingetaucht wird.				

Zweite Kenn-	Schutzumfang					
ziffer	Benennung	Erklärung				
8	Schutz beim dauernden Untertauchen	Wasser darf nicht in schädlichen Mengen eindringen, wenn das Betriebsmittel dauernd unter Wasser getaucht wird unter Bedingungen, die zwischen Her- steller und Anwender vereinbart werden müssen. Die Bedingungen müssen schwieriger sein als die für Kennziffer 7.				
9K*	Schutz bei Hochdruck- /Dampfstrahl- reinigung	Wasser, das aus jeder Richtung unter stark erhöhtem Druck gegen das Gehäuse gerichtet ist, darf keine schädlichen Wirkungen haben. Wasserdruck 100 bar Wassertemperatur 80°C				

^{*} Diese Kennziffer entstammt der Norm DIN 40050-9.

10

Normen, Formeln, Tabellen Gebrauchskategorien für Schaltelemente

Nach DI	Nach DIN EN 60947-5-1 (VDE 0660-200, Tabelle 1)						
Strom- art	Gebrauchs kategorie	Typische Anwendungsfälle	Gebra	Normale Gebrauchs- bedingungen			
		$\begin{split} &I = Einschaltstrom, \ I_c = Ausschaltstrom, \\ &I_e = Bemessungsbetriebsstrom, \\ &U = Spannung, \\ &U_e = Bemessungsbetriebsspannung \\ &U_r = Wiederkehrende Spannung, \\ &t_{0,95} = Zeit in ms, bis 95 % des stationären \\ &Stroms erreicht sind. \\ &P = U_e \ x \ I_e = Bemessungsleistung in Watt \end{split}$	Einscl I I _e	nalten <u>U</u> U _e			
Wech- sel-	AC-12	Steuern von ohmscher Last und Halbleiter- last in Eingangskreisen von Optokopplern	1	1			
strom	AC-13	Steuern von Halbleiterlast mit Trans- formatortrennung	2	1			
	AC-14	Steuern kleiner elektromagnetischer Last (max. 72 VA)	6	1			
	AC-15	Steuern elektromagnetischer Last (größer als 72 VA)	10	1			
			I	U			
			I _e	U _e			
Gleich- strom	DC-12	Steuern von ohmscher Last und Halbleiter- last in Eingangskreisen von Optokopplern	1	1			
	DC-13	Steuern von Elektromagneten	1	1			
	DC-14	Steuern von elektromagnetischen Lasten mit Sparwiderständen im Stromkreis	10	1			

Normen, Formeln, Tabellen Gebrauchskategorien für Schaltelemente

				Abweichende Gebrauchsbedingungen					
Ausschalten $\cos \phi = \frac{I}{I_e} = \frac{U}{U_e} = \cos \phi$			Einscha I I _e	Iten U Ue	cos φ	Auss I I _e	chaltei <u>U</u> U _e	n cos φ	
0,9	1	1	0,9	-	-	-	-	-	-
0,65	1	1	0,65	10	1,1	0,65	1,1	1,1	0,65
0,3	1	1	0,3	6	1,1	0,7	6	1,1	0,7
0,3	1	1	0,3	10	1,1	0,3	10	1,1	0,3
t _{0,95}	l l _e	$\frac{U}{U_e}$	T _{0,95}	l _e	U U _e	T _{0,95}	l l _e	$\frac{U}{U_{e}}$	T _{0,95}
1 ms	1	1	1 ms	-	-	-	-	-	-
6 x P1)	1	1	6 x P ¹⁾	1,1	1,1	6 x P ¹⁾	1,1	1,1	6 x P ¹⁾
15 ms	1	1	15 ms	10	1,1	15 ms	10	1,1	15 ms

¹⁾ Der Wert "6 x P" ergibt sich aus einem empirischen Verhältnis, das den meisten Gleichstrom-Magnetlasten bis zum oberen Grenzwert P = 50 W entspricht, wobei 6 [ms]/[W] = 300 [ms] ist. Lasten mit einer Bemessungsleistung über 50 W setzen sich aus kleinen parallel liegenden Lasten zusammen. Deshalb sind 300 ms eine obere Grenze, unabhängig von der Größe der Leistung.

Normen, Formeln, Tabellen Gebrauchskategorien für Schütze und Motorstarter

Strom- art	Gebrauchs kategorie	Typische Anwendungsfälle I = Einschaltstrom, I _c = Ausschaltstrom, I _e = Bemessungsbetriebsstrom, U = Spannung, U _e = Bemessungsbetriebsspannung U _r = Wiederkehrende Spannung	Nachweis der elek- trischen Lebens- dauer Einschalten		
			[A]	I _e	U
			Wech- sel- strom	AC-1	Nicht induktive oder schwach induktive Last, Widerstandsöfen
AC-2	Schleifringmotoren: Anlassen, Ausschalten	alle Werte		2,5	1
AC-3	Käfigläufermotoren: Anlassen, Ausschalten während des Laufes ⁴⁾	I _e ≤ 17 I _e > 17		6 6	1
AC-4	Käfigläufermotoren: Anlassen, Gegenstrombremsen, Reversieren, Tippen	l _e ≤ 17 l _e > 17		6	1
AC-5a	Schalten von Gasentladungslampen				
AC-5b	Schalten von Glühlampen				_
AC-6a ³⁾	Schalten von Transformatoren				_
AC-6b ³⁾	Schalten von Kondensatorbatterien				
AC-7a	Schwach induktive Last in Haus- haltsgeräten und ähnlichen Anwendungen	gemäß Angaben des Herstellers			
AC-7b	Motorlast für Haushalts- anwendungen				
AC-8a	Steuern von hermetisch abgeschlos- senen Kühlkompressormotoren mit manueller Rückstellung der Überlastauslöser ⁵⁾				
AC-8b	Steuern von hermetisch abgeschlos- senen Kühlkompressormotoren mit automatischer Rückstellung der Überlastauslöser ⁵⁾				

Normen, Formeln, Tabellen Gebrauchskategorien für Schütze und Motorstarter

				Nachweis	Nachweis des Schaltvermögens					
	Auss	chalten	1	Einschalt	en			Ausso	chalten	
cos	Ic	Ur	cos	I _e	ı	U	cos	I _c	Ur	cos
φ	I _e	U _e	φ	[A]	I _e	U _e	φ	l _e	U _e	φ
0,95	1	1	0,95	alle Werte	1,5	1,05	0,8	1,5	1,05	0,8
0,65	2,5	1	0,65	alle Werte	4	1,05	0,65	4	1,05	0,8
0,65	1	0,17	0,65	I _e ≦ 100	8	1,05	0,45	8	1,05	0,45
0,35	1	0,17	0,35	l _e > 100	8	1,05	0,35	8	1,05	0,35
0,65 0,35	6	1 1	0,65 0,35	$I_e \le 100$ $I_e > 100$	10 10	1,05 1,05	0,45 0,35	10 10	1,05 1,05	0,45 0,35
0,33	U	•	0,33	1 _e > 100	10	1,00	0,33	10	1,00	0,33
			-		3,0	1,05	0,45	3,0	1,05	0,45
					1,52)	1,05	2)	1,5 ²⁾	1,05	2)
			-		1,5	1,05	0,8	1,5	1,05	0,8
					8,0	1,05	1)	8,0	1,05	1)
					6,0	1,05	1)	6,0	1,05	1)
					6,0	1,05	1)	6,0	1,05	1)

Normen, Formeln, Tabellen Gebrauchskategorien für Schütze und Motorstarter

Nach DIN EN 60947-4-1 (VDE 0660-102, Tabelle 1) Strom-Gebrauch Typische Anwendungsfälle Nachweis der elektskategorie I = Einschaltstrom. rischen Lebensart Ic = Ausschaltstrom. dauer I_e = Bemessungsbetriebsstrom, Finschalten U = Spannung. U_a = Bemessungsbetriebsspanl_e nung, Ur = Wiederkehrende Spannung [A] ۱۵ U۵ Gleich-DC-1 Nicht induktive oder schwach alle 1 1 induktive Last. Widerstandsöfen Werte strom DC-3 Nebenschlussmotoren: Anlassen. alle 2.5 1 Gegenstrombremsen, Reversieren, Werte Tippen, Widerstandsbremsen DC-5 Reihenschlussmotoren: Anlassen. alle 2,5 1 Gegenstrombremsen, Reversieren, Werte Tippen, Widerstandsbremsen DC-6 Schalten von Glühlampen

 $^{^{1)}}$ cos ϕ = 0,45 für I_{e} \leq 100 A; cos ϕ = 0,35 für I_{e} > 100 A.

²⁾ Die Prüfungen sind mit Glühlampenlast durchzuführen.

³⁾ Die Prüfdaten sind hier entsprechend einer besonderen Tabelle aus den Prüfwerten für AC-3 oder AC-4 abzuleiten.

Normen, Formeln, Tabellen Gebrauchskategorien für Schütze und Motorstarter

				Nachwe	Nachweis des Schaltvermögens					
	Auss	chalte	n	Einschal	Einschalten			n Ausschalten		
L/R [ms]	$\frac{I_c}{I_e}$	$\frac{U_r}{U_e}$	L/R [ms]	I _e [A]	l l _e	U U _e	L/R [ms]	I _c	$\frac{U_r}{U_e}$	L/R [ms]
1	1	1	1	alle Werte	1,5	1,05	1	1,5	1,05	1
2	2,5	1	2	alle Werte	4	1,05	2,5	4	1,05	2,5
7,5	2,5	1	7,5	alle Werte	4	1,05	15	4	1,05	15
					1,5 ²⁾	1,05	2)	1,52)	1,05	2)

⁴⁾ Geräte für Gebrauchskategorie AC-3 dürfen für gelegentliches Tippen oder Gegenstrombremsen während einer begrenzten Dauer wie zum Einrichten einer Maschine verwendet werden; die Anzahl der Betätigungen darf dabei nicht über fünf je Minute und zehn je zehn Minuten hinausgehen.

⁵⁾ Beim hermetisch gekapselten Kühlkompressor sind Kompressor und Motor im gleichen Gehäuse ohne äußere Welle oder Wellendichtung gekapselt und der Motor wird mit Kühlmittel betrieben.

Für Lastschalter, Trenner, Lasttrenner und Schalter-Sicherungs-Einheiten nach DIN EN 60947-3 (VDE 0660-107, Tabelle 2)

Stromart	Gebrauchs- kategorie	$\label{eq:topicscheme} Typische Anwendungsfälle \\ I = Einschaltstrom, \\ I_c = Ausschaltstrom, \\ I_e = Bemessungsbetriebsstrom, \\ U = Spannung, \\ U_e = Bemessungsbetriebsspannung, \\ U_r = Wiederkehrende Spannung$
Wechsel- strom	AC-20 A(B)1)	Ein- und Ausschalten ohne Last
	AC-21 A(B)1)	Schalten ohmscher Last einschließlich mäßiger Überlast
	AC-22 A(B)1)	Schalten gemischter ohmscher und induktiver Last einschl. mäßiger Überlast
	AC-23 A(B)1)	Schalten von Motorlast oder anderer stark induktiver Last
Gleich- strom	DC-20 A(B)1)	Ein- und Ausschalten ohne Last
	DC-21 A(B)1)	Schalten ohmscher Last einschließlich mäßiger Überlast

10

Gleich- strom	DC-20 A(B)1)	Ein- und Ausschalten ohne Last
	DC-21 A(B)1)	Schalten ohmscher Last einschließlich mäßiger Überlast
	DC-22 A(B) ¹⁾	Schalten gemischter ohmscher und induktiver Last einschließlich mäßiger Überlast (z.B. Nebenschluss- Motoren)
	DC-23 A(B)1)	Schalten stark induktiver Last (z. B. Reihenschluss- Motoren)

¹⁾ A: häufige Betätigung, B: gelegentliche Betätigung.

Lasttrennschalter, die zum Schalten von Motoren geeignet sind, werden auch nach den Bedingungen → Abschnitt "Gebrauchskategorien für Schütze und Motorstarter", Seite 10-36 geprüft.

Normen, Formeln, Tabellen Gebrauchskategorien für Lasttrennschalter

Nachweis des Schaltvermögens							
Einschalte	n	Auss	Ausschalten				
l _e	1	U	cos	Ic	U _r	cos	
[A]	l _e	U_e	φ	I _e	U _e	φ	
alle Werte	1)		1)	1)		1)	
alle Werte	1,5	1,05	0,95	1,5	1,05	0,95	
alle Werte	3	1,05	0,65	3	1,05	0,65	
I _e ≦100	10	1,05	0,45	8	1,05	0,45	
l _e > 100	10	1,05	0,35	8	1,05	0,35	
l _e	<u> </u>	U	L/R	Ic	U_r	L/R	
[A]	l _e	U_e	[ms]	l _e	U_e	[ms]	
alle Werte	1)	1)	1)	1)	1)	1)	
alle Werte	1,5	1,05	1	1,5	1,05	1	
alle Werte	4	1,05	2,5	4	1,05	2,5	
alle Werte	4	1,05	15	4	1,05	15	

Normen, Formeln, Tabellen Motorbemessungsströme

Motorbemessungsströme von Drehstrommotoren (Richtwerte für Käfigläufer)

Kleinstmögliche Kurzschlusssicherung für Drehstrommotoren

Der max. Wert richtet sich nach dem Schaltgerät bzw. Motorschutzrelais.

Die Motorbemessungsströme gelten für normale innen- und oberfächengekühlte Drehstrommotoren mit 1500 min-1.

Direkter Anlauf: Anlaufstrom max. 6 x

Motorbemessungsstrom, Anlaufzeit max. 5 s.

 Υ/\triangle -Anlauf: Anlaufstrom max. 2 x

Motorbemessungsstrom, Anlaufzeit

max. 15 s.

Motorschutzrelais im Strang auf 0,58 x Motorbemessungsstrom einstellen. Sicherungsbemessungsströme bei Y/\(\triangle Anlauf gelten auch für Drehstrommotoren mit Schleifringläufer.

Bei höherem Bemessungs-, Anlaufstrom und/oder längerer Anlaufzeit größere Sicherung verwenden.

Tabelle gilt für "träge" bzw. "gL"-Sicherungen (DIN VDE 0636).

Bei NH-Sicherungen mit aM-Charakteristik wird Sicherung = Bemessungsstrom gewählt.

Normen, Formeln, Tabellen Motorbemessungsströme

Motorle	eistung		230 V			400 V		
			Motor- bemes- sungs- strom	bemes- sungs- Anlauf		Motor- bemes- sungs- strom	Sicherun Anlauf direkt	g Ƴ/△
kW	cos φ	η [%]	Α	Α	Α	Α	Α	Α
0,06 0,09 0,12 0,18	0,7 0,7 0,7 0,7	58 60 60 62	0,37 0,54 0,72 1,04	2 2 4 4	- - 2 2	0,21 0,31 0,41 0,6	2 2 2 2	- - -
0,25	0,7	62	1,4	4	2	0,8	4	2
0,37	0,72	66	2	6	4	1,1	4	2
0,55	0,75	69	2,7	10	4	1,5	4	2
0,75	0,79	74	3,2	10	4	1,9	6	4
1,1	0,81	74	4,6	10	6	2,6	6	4
1,5	0,81	74	6,3	16	10	3,6	6	4
2,2	0,81	78	8,7	20	10	5	10	6
3	0,82	80	11,5	25	16	6,6	16	10
4	0,82	83	14,8	32	16	8,5	20	10
5,5	0,82	86	19,6	32	25	11,3	25	16
7,5	0,82	87	26,4	50	32	15,2	32	16
11	0,84	87	38	80	40	21,7	40	25
15	0,84	88	51	100	63	29,3	63	32
18,5	0,84	88	63	125	80	36	63	40
22	0,84	92	71	125	80	41	80	50
30	0,85	92	96	200	100	55	100	63
37	0,86	92	117	200	125	68	125	80
45	0,86	93	141	250	160	81	160	100
55	0,86	93	173	250	200	99	200	125
75	0,86	94	233	315	250	134	200	160
90	0,86	94	279	400	315	161	250	200
110	0,86	94	342	500	400	196	315	200
132	0,87	95	401	630	500	231	400	250
160	0,87	95	486	630	630	279	400	315
200	0,87	95	607	800	630	349	500	400
250	0,87	95	-	-	-	437	630	500
315	0,87	96	-	-	-	544	800	630
400	0,88	96	-	-	-	683	1000	800
450 500 560 630	0,88 0,88 0,88 0,88	96 97 97 97	- - -	- - -	- - -	769 - - -	1000 - - -	800 - - -

10

Normen, Formeln, Tabellen Motorbemessungsströme

440 V			500 V			690 V		
Motor- bemes- sungs- strom	Sicherur Anlauf direkt	ng Ƴ/△	Motor- bemes- sungs- strom	Sicherun Anlauf direkt	rg Ƴ/△	Motor- bemes- sungs- strom	Sicherur Anlauf direkt)g Y /∆
Α	Α	Α	Α	Α	Α	Α	Α	Α
0,19 0,28 0,37 0,54	2 2 2 2	- - -	0,17 0,25 0,33 0,48	2 2 2 2	- - -	0,12 0,18 0,24 0,35	2 2 2 2	- - -
0,76	2	-	0,7	2	-	0,5	2	-
1	4	2	0,9	2	2	0,7	2	-
1,4	4	2	1,2	4	2	0,9	4	2
1,7	4	2	1,5	4	2	1,1	4	2
2,4	4	2	2,1	6	4	1,5	4	2
3,3	6	4	2,9	6	4	2,1	6	4
4,6	10	6	4	10	4	2,9	10	4
6	16	10	5,3	16	6	3,8	10	4
7,7	16	10	6,8	16	10	4,9	16	6
10,2	20	10	9	20	16	6,5	16	10
13,8	25	16	12,1	25	16	8,8	20	10
19,8	32	25	17,4	32	20	12,6	25	16
26,6	50	32	23,4	50	25	17	32	20
32,8	63	32	28,9	50	32	20,9	32	25
37	80	40	33	63	32	23,8	50	25
50	100	63	44	80	50	32	63	32
61	125	80	54	100	63	39	80	50
74	125	100	65	125	80	47	80	63
90	125	100	79	160	80	58	100	63
122	160	125	107	200	125	78	160	100
146	200	160	129	200	160	93	160	100
179	250	200	157	250	160	114	200	125
210	250	250	184	250	200	134	250	160
254	315	250	224	315	250	162	250	200
318	400	315	279	400	315	202	315	250
397	630	400	349	500	400	253	400	315
495	630	630	436	630	500	316	500	400
621	800	800	547	800	630	396	630	400
699	800	800	615	800	630	446	630	630
-	-	-	-	-	-	491	630	630
-	-	-	-	-	-	550	800	630
-	-	-	-	-	-	618	800	630

Leitungs- und Kabeleinführungen mit Kabeltüllen

Die Leitungseinführung in gekapselte Geräte wird durch die Verwendung von Kabeltüllen erheblich vereinfacht und verbessert.

Kabeltüllen

für direkte und schnelle Leitungseinführung in Gehäuse und als Verschlussstopfen.

Membran- tüllen metrisch	Leitungs- einfüh- rung	Bohrungs- durch- messer	Kabel- außen- durch- messer	Verwendung Kabel NYM/NYY, 4-adrig	Kabeltülle Typ
		mm	mm	mm ²	
	M16	16,5	1 – 9	H03VV-F3 x 0,75 NYM 1 x 16/3 x 1,5	KT-M16
	M20	20,5	1 – 13	H03VV-F3 x 0,75 NYM 5 x 1,5/5 x 2,5	KT-M20
IP66, mit integrierter	M25	25,5	1 – 18	H03VV-F3 x 0,75 NYM 4x 10	KT-M25
Durch- steck- membran • PE und thermo- plastisches Elastomer, halogenfrei	M32	32,5	1 – 25	H03VV-F3 x 0,75 NYM 4 x 16/5 x 10	KT-M32

Detaillierte Informationen zu den Materialeigenschaften → Tabelle, Seite 10-48.

Leitungs- und Kabeleinführungen mit Kabelverschraubungen Kabelverschraubungen metrisch nach DIN EN 50262; VDE 0619

mit 9, 10, 12, 14 oder 15 mm langem Gewinde.

Kabelver- schraubungen	Leitungs- einfüh- rung	Bohrungs- durch- messer	Kabel- außen- durch- messer	Verwendung Kabel NYM/NYY, 4-adrig	Kabelver- schraubung Typ
		mm	mm	mm²	
	M12	12,5	3 –7	H03VV-F3 x 0,75 NYM 1 x 2,5	V-M12
	M16	16,5	4,5 – 10	H05VV-F3 x 1,5 NYM 1 x 16/3 x 1,5	V-M16
	M20	20,5	6 – 13	H05VV-F4 x 2,5/3 x 4 NYM 5 x 1,5/5 x 2,5	V-M20
 mit Gegenmutter und integrierter Zugentlastung 	M25	25,5	9 – 17	H05VV-F5 x 2,5/5 x 4 NYM 5 x 2,5/5 x 6	V-M25
 IP68 bis 5 bar, Polyamid, halo- 	M32	32,5	13 – 21	NYM 5 x 10	V-M32
genfrei	M32	32,5	18 – 25	NYM 5 x 16	V-M32G1)
	M40	40,5	16 – 28	NYM 5 x 16	V-M40
	M50	50,5	21 – 35	NYM 4 x 35/5 x 25	V-M50
	M63	63,5	34 – 48	NYM 4 x 35	V-M63
Belüftungskabel- verschraubung IP69K	M20	20,5	6 – 13	H05VV-F 4 x 2,5/3 x 4 NYM 5 x 1,5/5 x 2,5	V-M20-VENT

¹⁾ Entspricht nicht der Norm DIN EN 50262.

Detaillierte Informationen zu den Materialeigenschaften → Tabelle, Seite 10-48.

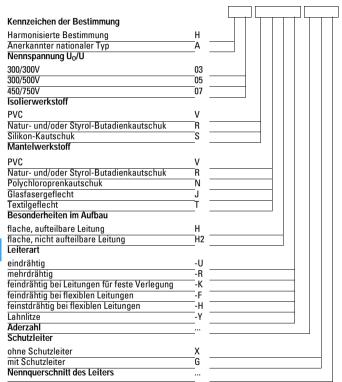
Materialeigenschaften

	KT-M	V-M
Material	Polyethylen und thermo- plastisches Elastomer, halogenfrei	Polyamid, halogenfrei
Farbe	Grau, RAL 7035	Grau, RAL 7035
Schutzart	bis IP66	IP68 bis 5 bar (30 min)
Chemische Beständigkeit	Beständig gegen: • Alkohol, • tierische und pflanzliche Fette, • schwache Laugen, • schwache Säuren, • Wasser	Beständig gegen: Aceton, Benzin, Benzol, Dieselöl, Fette, Öle, Lösungsmittel für Farben und Lacke
Spannungsrissgefahr	relativ hoch	niedrig
Temperaturbeständigkeit	-40 °C80 °C, kurzzeitig bis ca. 100 °C	-20 °C100 °C, kurzzeitig bis ca. 120 °C
Flammwidrigkeit	-	Glühdrahtprüfung 750 °C nach DIN EN 60695-2-11; VDE 0471-2-11
Brennbarkeit nach UL94	-	V2

Außendurchmesser von Leitungen und Kabeln

Anzahl der Leiter	ungefährer Außendurchmesser (Mittelwert mehrerer Fabrikate)					
	NYM	NYY	H05	H07	NYCY	
			RR-F	RN-F	NYCWY	
Querschnitt	mm	mm	mm	mm	mm	
mm ²	max.		max.	max.		
2 x 1,5	10	11	9	10	12	
2 x 2,5	11	13	13	11	14	
3 x 1,5	10	12	10	10	13	
3 x 2,5	11	13	11	12	14	
3 x 4	13	17	-	14	15	
3 x 6	15	18	-	16	16	
3 x 10	18	20	-	23	18	
3 x 16	20	22	-	25	22	
4 x 1,5	11	13	9	11	13	
4 x 2,5	12	14	11	13	15	
4 x 4	14	16	-	15	16	
4 x 6	16	17	-	17	18	
4 x 10	18	19	-	23	21	
4 x 16	22	23	-	27	24	
4 x 25	27	27	-	32	30	
4 x 35	30	28	-	36	31	
4 x 50	_	30	-	42	34	
4 x 70	_	34	-	47	38	
4 x 95	_	39	-	53	43	
4 x 120	_	42	-	_	46	
4 x 150	_	47	-	_	52	
4 x 185	_	55	-	_	60	
4 x 240	-	62	-	-	70	
5 x 1,5	11	14	12	14	15	
5 x 2,5	13	15	14	17	17	
5 x 4	15	17	_	19	18	
5 x 6	17	19	-	21	20	
5 x 10	20	21	-	26	-	
5 x 16	25	23	-	30	-	
8 x 1,5	_	15	-	-	-	
10 x 1,5	-	18	-	-	-	
16 x 1,5	-	20	-	_	-	
24 x 1,5	-	25	_	-	-	

NYM: Mantelleitung


NYY: Kabel mit Kunststoffmantel H05RR-F: leichte Gummi-Schlauchleitung (NLH + NSH) NYCY: Kabel mit konzentrischem Leiter und Kunststoffmantel

NYCWY: Kabel mit konzentrischem wellenförmigen Leiter und Kunststoffmantel

10

Normen, Formeln, Tabellen Leitungen

Kabel und Leitungen, Typenkurzzeichen

Beispiele für vollständige Leitungsbezeichnungen

PVC-Verdrahtungsleitung, 0,75 mm² feindrähtig, H05V-K 0,75 schwarz

Schwere Gummischlauchleitung, 3-adrig, 2,5 mm² ohne grüngelben Schutzleiter A07RN-F3 x 2,5

10

Bemessungsströme und Kurzschlussströme von Normtransformatoren

Bemessungsspa	innung			
	400/230 V			525 V
U_n				
Kurzschluss- spannung U _K		4 %	6 %	
Bemessungs- leistung	Bemessungs- strom	Kurzschluss- strom		Bemessungs- strom
	In	I _K "		In
kVA	Α	Α	Α	Α
50	72	1967	_	55
63	91	2478	1652	69
100	144	3933	2622	110
125	180	4916	3278	137
160	231	6293	4195	176
200	289	7866	5244	220
250	361	9833	6555	275
315	455	12390	8260	346
400	577	15733	10489	440
500	722	19666	13111	550
630	909	24779	16519	693
800	1155	_	20977	880
1000	1443	-	26221	1100
1250	1804	_	32777	1375
1600	2309	_	41954	1760
2000	2887	_	52443	2199
2500	3608	-	65553	2749

10

		/00/400 V		
		690/400 V		
4 %	6 %		4 %	6 %
Kurzschluss- strom		Bemessungs- strom	Kurzschluss- strom	
$I_{K}^{\prime\prime}$		In	I _K "	
Α	Α	Α	Α	Α
1498	-,	42	1140	-
1888	1259	53	1436	958
2997	1998	84	2280	1520
3746	2497	105	2850	1900
4795	3197	134	3648	2432
5993	3996	167	4560	3040
7492	4995	209	5700	3800
9440	6293	264	7182	4788
11987	7991	335	9120	6080
14984	9989	418	11401	7600
18879	12586	527	14365	9576
_	15983	669	_	12161
_	19978	837	_	15201
_	24973	1046	_	19001
_	31965	1339	_	24321
_	39956	1673	_	30402
_	49945	2092	_	38002

Normen, Formeln, Tabellen Formeln

Ohmsches Gesetz

$$U = I \times R [V]$$

$$I = \frac{U}{R}[A]$$

$$R = \frac{U}{I} [\Omega]$$

Widerstand eines Leitungsstückes

$$R = \frac{1}{\gamma \times A} [\Omega]$$

Kunfer:

$$\chi = 57 \frac{m}{\Omega mm^2}$$

I = Länge des Leiters [m]

Aluminium:

$$\chi = 33 \frac{m}{\Omega mm^2}$$

 $\chi = \text{Leitfähigkeit } [m/\Omega mm^2]$

Eisen: $\chi = 8.3 \frac{m}{\Omega mm^2}$

A = Querschnitt des Leiters [mm²]

7ink $\chi = 15.5 \frac{m}{\Omega mm^2}$

Widerstände

$$\textbf{X}_{\textbf{L}} \,=\, \textbf{2} \times \boldsymbol{\pi} \times \textbf{f} \times \textbf{L} \, [\boldsymbol{\Omega}]$$

Kondensatoren

$$\boldsymbol{X}_{C} \, = \, \frac{1}{2 \times \pi \times f \times C} \, [\boldsymbol{\Omega}]$$

Scheinwiderstand

$$Z \; = \; \sqrt{R^2 + {(X_L \! - \! X_C)}^2}$$

$$Z = \frac{R}{\cos v} [\Re \Omega]$$

L = Induktivität [H] C = Kapazität [F]

f = Frequenz [Hz] φ = Phasenwinkel

 $X_I = induktiver Widerstand [\Omega]$

 $X_C = \text{kapazitiver Widerstand } [\Omega]$

Parallelschaltung von Widerständen

Bei 2 parallelen Widerständen:
$R_{g} = \frac{R_{1} \times R_{2}}{R_{1} + R_{2}} [\Omega]$

Bei 3 parallelen Widerständen:

$$R_{g} = \frac{R_{1} \times R_{2} \times R_{3}}{R_{1} \times R_{2} + R_{2} \times R_{3} + R_{1} \times R_{3}} [\Omega]$$

allgemeine Widerstandsberechnung:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots [1/\Omega]$$

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_2} + \dots [1/\Omega]$$

$$\frac{1}{X} = \frac{1}{X_1} + \frac{1}{X_2} + \frac{1}{X_3} + ...[1/\Omega]$$

10

Normen, Formeln, Tabellen Formeln

Elektrische Leistung		
	Leistung	Stromaufnahme
Gleichstrom	$P = U \times I [W]$	$I = \frac{P}{U}[A]$
Einphasen-Wechselstrom	$P \; = \; U \times I \times cos\phi[W]$	$I = \frac{P}{U \times cos\phi}[A]$
Drehstrom	$P = \sqrt{3} \times U \times I \times cos \phi[W]$	$I = \frac{P}{\sqrt{3} \times U \times \cos \varphi} [A]$

Kraftwirkung zwischen 2 parallelen Leitern

2 Leiter mit Strömen I₁ und I₂

$$F_2 = \frac{0.2 \times I_1 \times I_2 \times S}{a}[N]$$

$$S = Stützweite [cm]$$

$$a = Abstand [cm]$$

$$I_1$$

$$I_2$$

$$I_3$$

$$I_4$$

$$I_5$$

$$I_7$$

$$I_8$$

$$I_9$$

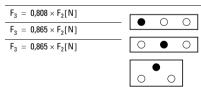
$$I_9$$

$$I_9$$

$$I_{10}$$

$$I_{11}$$

$$I_{12}$$


$$I_{13}$$

$$I_{14}$$

$$I_{15}$$

Kraftwirkung zwischen 3 parallelen Leitern

3 Leiter mit Strom I

Normen, Formeln, Tabellen Formeln

Spannungsfall		
	Leistung bekannt	Strom bekannt
Gleichstrom	$\Delta U = \frac{2 \times I \times P}{Z \times A \times U} [V]$	$\Delta U = \frac{2 \times I \times I}{z \times A} [V]$
Einphasen- Wechselstrom	$\Delta U = \frac{2 \times I \times P}{Z \times A \times U} [V]$	$\Delta U = \frac{2 \times I \times I}{z \times A} \times cos\phi [V]$
Drehstrom	$\Delta U = \frac{I \times P}{Z \times A \times U} [V]$	$\Delta U = \sqrt{3} \times \frac{I \times I}{Z \times A} \times \cos \varphi \ [V]$

Querschnittsbestimmung nach Spannungsfall

Gleichstrom	Einphasen-Wechselstrom	Drehstrom	
Leistung bekannt			

$$A = \frac{2 \times I \times P}{z \times \Delta U \times U} [mm^2] \qquad A = \frac{2 \times I \times P}{z \times \Delta U \times U} [mm^2] \qquad A = \frac{I \times P}{z \times \Delta U \times U} [mm^2]$$

Strom bekannt

$$A \, = \, \frac{2 \times 1 \times 1}{z \times \Delta U} \, \left[\, \text{mm}^2 \, \right] \hspace{1cm} A \, = \, \frac{2 \times 1 \times 1}{z \times \Delta U} \times \cos \phi \, \left[\, \text{mm}^2 \, \right] \hspace{1cm} A \, = \, \sqrt{3} \times \frac{1 \times 1}{z \times \Delta U} \times \cos \phi \, \left[\, \text{mm}^2 \, \right]$$

Leistungsverlust

Gleichstrom	Einphasen-Wechselstrom	
$P_{Verl} = \frac{2 \times I \times P \times P}{7 \times A \times II \times II}[W]$	$P_{Verl} = \frac{2 \times I \times P \times P}{7 \times A \times II \times II \times 2000 \times 2000 \times 1000 \times 100$	[W]

Drehstrom

$$P_{\text{Verl}} \, = \, \frac{I \times P \times P}{z \times A \times U \times U \times cosv \times cosv} \, \, [W]$$

I = Einfache Länge [m] der Leitung;

A = Querschnitt [mm2] des Einzelleiters:

z = Leitfähigkeit (Kupfer: z = 57; Aluminium: z = 33; Eisen: z = 8,3 $\frac{m}{Omm^2}$)

 $\Delta U = Spannungsabfall$

Normen, Formeln, Tabellen Formeln

	Abgegebene Leistung	Stromaufnahme
Gleichstrom	$P_1 = U \times I \times h [W]$	$I = \frac{P_1}{U \times h} [A]$
Einphasen- Wechsel- strom	$P_1 = U \times I \times cosv \times h [W]$	$I = \frac{P_1}{U \times \cos v \times h} [A]$
Drehstrom	$P_1 = (1,73) \times U \times I \times cosv \times h [W]$	$I = \frac{P_1}{(1,73) \times U \times \cos V \times h} [A]$

 P_1 = an der Welle des Motors abgegebene mechanische Leistung gemäß Leistungsschild P_2 = aufgenommene elektr. Leistung

Wirkungs- grad	$h = \frac{P_1}{P_2} \times (100 \%)$	$P_2 = \frac{P_1}{h} [W]$
Polzahl	Synchrone Drehzahl	Vollast-Drehzahl
2	3000	2800 – 2950
4	1500	1400 – 1470
6	1000	900 – 985
8	750	690 – 735
10	600	550 – 585

Synchrone Drehzahl = ungefähre Leerlaufdrehzahl

Internationales Einheitensystem (SI)				
Basisgrößen Physikalische Größe	Symbol	SI-Basiseinheit	weitere SI-Einheiten	
Länge	I	m (Meter)	km, dm, cm, mm, μm, nm, pm	
Masse	m	kg (Kilogramm)	Mg, g, mg, μg	
Zeit	t	s (Sekunde)	ks, ms, μs, ns	
Elektrische Stromstärke	I	A (Ampere)	kA, mA, μA, nA, pA	
Thermo- dynamische Temperatur	Т	K (Kelvin)	-	
Stoffmenge	n	mol (Mol)	Gmol, Mmol, kmol, mmol, µmol	
Lichtstärke	I _v	cd (Candela)	Mcd, kcd, mcd	

Umrechnungsfaktoren für alte Einheiten in SI-Einheiten

Umrechnungsfaktoren				
Größe	alte Einheit	SI-Einheit genau	gerundeter Wert	
Kraft	1 kp 1 dyn	9,80665 N 1·10 ⁻⁵ N	10 N 1·10 ⁻⁵ N	
Kraftmoment	1 mkp	9,80665 Nm	10 Nm	
Druck	1 at 1 Atm = 760 Torr 1 Torr 1 mWS 1 mmWS 1 mmWS	0,980665 bar 1,01325 bar 1,3332 mbar 0,0980665 bar 0,0980665 mbar 9,80665 Pa	1 bar 1,01 bar 1,33 bar 0,1 bar 0,1 mbar 10 Pa	
Festigkeit, Spannung	1 kp/mm²	9,80665 N mm ²	10 N/mm ²	
Energie	1 mkp 1 kcal 1 erg	9,80665 J 4,1868 kJ 1·10 ⁻⁷ J	10 J 4,2 kJ 1·10 ⁻⁷ J	

10

Umrechnungsfakt	oren		
Größe	alte Einheit	SI-Einheit genau	gerundeter Wert
Leistung	1 kcal h	4,1868 kJ	4,2 kJ h
	1 kcal h	1,163 W	1,16 W
	1 PS	0,73549 kW	0,740 kW
Wärme- durchgangszahl	1 kcal m²h°C	4,1868	4,2 kJ m²hK
	1 kcal m²h°C	1,163 W/m ² K	1,16 W/m ² K
dynamische Viskosität	$1\cdot 10^{-6}\ \frac{\text{kps}}{\text{m}^2}$	$0,980665 \cdot 10^{-5} \ \frac{\text{Ns}}{\text{m}^2}$	$1\cdot 10^{-5}\frac{\text{Ns}}{\text{m}^2}$
	1 Poise	0,1 Ns/m ²	0,1 Ns/m ²
	1 Poise 0,1	Pa·s	
kinetische Viskosität	1 Stokes	$1\cdot 10^{-4} \ \frac{\text{m}^2}{\text{s}}$	$1\cdot 10^{-4} \ \frac{\text{m}^2}{\text{s}}$
Winkel (ebener)	1	1/360 pla	2, 78 · 10 ⁻³ pla
	1 gon	1/400 pla	2, 5 · 10 ⁻³ pla
	1	$\frac{\pi}{180}$ rad	17, 5 · 10 ⁻³ rad
	1 gon	$\frac{\pi}{200}$ rad	15, 7 · 10 ⁻³ pla
	57.296		1 rad
	63.662 gon		1 rad

Umrechnung von SI-Einheiten Größe SI-Einheiten Sym-Basis-Umrechnung der SI-Einheiten Namen bol einheiten Kraft Newton N $1 \cdot \frac{\text{kg} \cdot \text{m}}{2}$ Kraft-Newton-Nm $1 \cdot \frac{\text{kg} \cdot \text{m}^2}{\text{c}^2}$ moment meter Druck Bar bar $10^5 \frac{\text{kg}}{\text{m} \cdot \text{s}^2}$ 1 bar = $10^5 Pa = 10^5 \frac{N}{2}$ Pascal Pa $1 \text{ Pa} = 10^{-5} \text{bar}$ $1 \cdot \frac{kg}{m \cdot s^2}$ 1 J = 1 Ws = 1 Nm Joule $1 \cdot \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$ Energie, J Wärmemenge $1 \cdot \frac{\text{kg} \cdot \text{m}^2}{\text{s}^3} \qquad W = 1 \frac{\text{J}}{\text{s}} = 1 \frac{\text{N} \cdot \text{m}}{\text{s}}$ Leistuna Watt W Spannung, $10^6 \frac{\text{kg}}{\text{m} \cdot \text{s}^2}$ $1 \frac{\text{N}}{\text{mm}^2} = 10^2 \frac{\text{N}}{\text{cm}^2}$ mm² Festigkeit Winkel Grad $360^{\circ} = 1 \text{ pla} = 2\pi \text{ rad}$ (ebener) Gon 400 gon = 360° qon Radiant rad 1 m 1 pla = $2\pi \text{ rad} = 360^{\circ}$ Vollwinkel pla Spannung V Volt $1 V = 1 \cdot \frac{W}{\Lambda}$ $1 \cdot \frac{\text{kg} \cdot \text{m}^2}{\text{s}^3 \cdot \Delta}$ Widerstand Ohm Ω $1 \cdot \frac{\text{kg} \cdot \text{m}^2}{\text{s}^3 \cdot \Delta^2}$ $1 \Omega = 1 \cdot \frac{V}{\Delta} = 1 \cdot \frac{W}{\Delta^2}$ Leitwert Siemens S $1 \cdot \frac{s^3 \cdot A^2}{ka \cdot m^2}$ $1 S = 1 \cdot \frac{A}{V} = 1 \cdot \frac{A^2}{W}$ С Ladung Coulomb $1 \cdot A \cdot s$ Elektrizitäts-

menae

Umrechnung von SI-Einheiten							
Größe	SI-Einheiten Namen	Sym- bol	Basis- einheiten	Umrechnung der SI-Einheiten			
Kapazität	Farad	F	$1 \cdot \frac{s^4 \cdot A}{kg \cdot m^2}$	$1 F = 1 \cdot \frac{C}{V} = 1 \cdot \frac{s \cdot A^2}{W}$			
Elektrische Feldstärke		Vm	$1 \cdot \frac{\text{kg} \cdot \text{m}}{\text{s}^3 \cdot \text{A}}$	$1\frac{V}{m} = 1 \cdot \frac{W}{A \cdot m}$			
Fluss	Weber	W _b	$1 \cdot \frac{kg \cdot m^2}{s^2 \cdot A}$	$1 W_b = 1 \cdot V \cdot s = 1 \cdot \frac{W \cdot s}{A}$			
Flussdichte Induktion	Tesla	T	$1 \cdot \frac{kg}{s^2 \cdot A}$	$1 \ T \ = \ \frac{W_b}{m^2} \ = \ 1 \cdot \frac{V \cdot s}{m^2} \ = \ 1 \cdot \frac{W \cdot s}{m^2 A}$			
Induktivität	Henry	Н	$1 \cdot \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2 \cdot \text{A}^2}$	$1 \ H \ = \ \frac{W_b}{A} \ = \ 1 \cdot \frac{V \cdot s}{A} \ = \ 1 \cdot \frac{W \cdot s}{A^2}$			

Dezimale Teile und Vielfache von Einheiten

Potenz	Vorsätze	Symbol	Potenz	Vorsätze	Symbol
10-18	Atto	а	10-1	Dezi	d
10 ⁻¹⁵	Femto	f	10	Deka	da
10-12	Piko	р	10 ²	Hekto	h
10-9	Nano	n	10 ³	Kilo	k
10-6	Mikro	μ	106	Mega	M
10-3	Milli	m	10 ⁹	Giga	G
10-2	Zenti	С	1012	Tera	T

Physikalische Einheiten

nicht mehr zulässige Einheiten

Kraft (mechanisch)

SI-Einheit:		N (Newton) J/m (Joule/m)		
bisherige Einheit:		kp (kilopond) dyn (Dyn)		
1 N	= 1 J/m	= 1 kg m/s ²	= 0,102 kp	= 10 ⁵ dyn
1 J/m	= 1 N	= 1 kg m/s ²	= 0,102 kp	= 10 ⁵ dyn
1 kg m/s ²	= 1 N	= 1 J/m	= 0,102 kp	= 10 ⁵ dyn
1 kp	= 9,81 N	= 9,81 J/m	= 9,81 kg m/s ²	= 0,981 10 ⁶ dyn
1 dyn	= 10 ⁻⁵ N	= 10 ⁻⁵ J/m	$= 10^{-5} \text{ kg m/s}^2$	= 1,02 10 ⁻⁵ kp

Druck SI-

Einheit:		bar (Bar)				
bishe- rige Einheit:		at = kp/cm 2 = 10 m Ws Torr = mm Hg atm				
1 Pa	= 1 N/m ²	= 10 ⁻⁵ bar				
1 Pa	= 10 ⁻⁵ bar	= 10,2 · 10 ⁻⁶ at	= 9,87 · 10 ⁻⁶ at	= 7,5 · 10 ⁻³ Torr		
1 bar	= 10 ⁵ Pa	= 1,02 at	= 0,987 at	= 750 Torr		
1 at	= 98,1 · 10 ³ Pa	= 0,981 bar	= 0,968 at	= 736 Torr		
1 atm	= 101,3 · 10 ³ Pa	= 1,013 bar	= 1,033 at	= 760 Torr		
1 Torr	= 133,3 Pa	= 1,333 · 10 ⁻³ bar	= 1,359 · 10 ⁻³ at	= 1,316 · 10 ⁻³ atm		

Pa (Pascal)

10

Arbeit					
SI-Einhe	it:		J (Joule) Nm (Newtonmete	er)	
SI-Einheit: Ws (Wattsekunde) (wie bisher) kWh (Kilowattstunde)					
bisherig	e Einheit:		kcal (Kilokalorie)	= cal · 10 ⁻³	
1 Ws	= 1 J	= 1 Nm	10 ⁷ erg		
1 Ws	= 278 · 10 ⁻⁹ kWh	= 1 Nm	= 1 J	= 0,102 kpm	= 0,239 cal
1 kWh	= 3,6 · 10 ⁶ Ws	= 3,6 · 10 ⁶ Nm	= 3,6 · 10 ⁶ J	= 367 · 106 kpm	= 860 kcal
1 Nm	= 1 Ws	= 278 · 10 ⁻⁹ kWh	= 1 J	= 0,102 kpm	= 0,239 cal
1 J	= 1 Ws	= 278 · 10 ⁻⁹ kWh	= 1 Nm	= 0,102 kpm	= 0,239 cal
1 kpm	= 9,81 Ws	= 272 · 10 ⁻⁶ kWh	= 9,81 Nm	= 9,81 J	= 2,34 cal
1 kcal	= 4,19 · 10 ³ Ws	= 1,16 · 10 ⁻³ kWh	= 4,19 · 10 ³ Nm	= 4,19 · 10 ³ J	= 427 kpm

Leistung

SI-Einhei	t:		Nm/s (Newtonmeter/s) J/s (Joule/s)			
SI-Einheit: W (Watt) (wie bisher) kW (Kilowatt)						
bisherige Einheit: kcal/s (Kilokalorie/Sek.) = cal/s \cdot 10 ³						
			kcal/h (Kilokalorie/	Std.) = cal/h · 106		
			kpm/s (Kilopondme	eter/Sek.)		
			PS (Pferdestärke)			
1 W	= 1 J/s	= 1 Nm/s				
1 W	= 10 ⁻³ kW	= 0,102 kpm/s	= 1,36 · 10 ⁻³ PS	= 860 cal/h	= 0,239 cal/s	
1 kW	= 10 ³ W	= 102 kpm/s	= 1,36 PS	= 860 · 103 cal/h	= 239 cal/s	
1 kpm/s	= 9,81 W	= 9,81 · 10 ⁻³ kW	= 13,3 · 10 ⁻³ PS	= 8,43 · 10 ³ cal/h	= 2,34 cal/s	
1 PS	= 736 W	= 0,736 kW	= 75 kpm/s	= 632 · 103 cal/h	= 176 cal/s	
1 kcal/h	= 1,16 W	= 1,16 · 10 ⁻³ kW	= 119 · 10 ⁻³ kpm/s	= 1,58 · 10 ⁻³ PS	= 277,8 · 10 ⁻³ cal/s	
1 cal/s	= 4,19 W	= 4,19 · 10 ⁻³ kW	= 0,427 kpm/s	= 5,69 · 10 ⁻³ PS	= 3,6 kcal/h	

Magnetische Feldstärke

SI-Einheit:

bisherige Einheit:		Oe = (Oerstedt)
1 A/m	$= 0,001 \frac{kA}{m}$	= 0,01256 Oe
1 kA m	= 1000 A/m	= 12,56 Oe
1 Oe	= 79, 6 A/m	$=$ 0, 0796 $\frac{kA}{m}$

Magnetischer Fluss

SI-Einheit		Wb (Weber) μWb (Mikroweber)
bisherige E	inheit:	M = Maxwell
1 Wb	= 1 Tm ²	
1 Wb	= 10 ⁶ μWb	= 10 ⁸ M
1 μWb	= 10 ⁻⁶ Wb	= 100 M
1 M	= 10 ⁻⁸ Wb	= 0,01 μWb

10

Magnetische Flussdichte

SI-Einheit:		T (Tesla) mT (Millitesla)
bisherige E	inheit:	G = Gauß
1 T	= 1 Wb/m ²	
1 T	= 10 ³ mT	= 10 ⁴ G
1 mT	= 10 ⁻³ T	= 10 G
1 G	= 0,1 ⁻³ T	= 0,1 mT

Umrechnung von engl./amerikanischen Einheiten in SI-Einheiten

Länge	1 in	1 ft	1 yd	1 mile Landmeile	1 mile Seemeile	
m	25,4 · 10 -3	0,3048	0,9144	1,609 · 10 ³	1,852 · 10 ³	
Gewichte	1 lb	1 ton (UK) long ton	1 cwt (UK) long cwt	1 ton (US) short ton	1 ounce	1 grain
kg	0,4536	1016	50,80	907,2	28,35 · 10-3	64,80 · 10-6
Fläche	1 sq.in	1 sq.ft	1 sq.yd	1 acre	1 sq.mile	
m ²	0,6452 · 10-3	92,90 · 10-3	0,8361	4,047 · 10 ³	2,590 · 10 ³	
Volumen	1 cu.in	1 cu.ft	1 cu.yd	1 gal (US)	1 gal (UK)	
m ³	16,39 · 10 ⁻⁶	28,32 · 10-3	0,7646	3,785 · 10-3	4,546 · 10-3	
Kraft	1 lb	1 ton (UK) long ton	1 ton (US) short ton	1 pdl (poundal)		
N	4,448	9,964 · 10 ³	8,897 · 10 ³	0,1383		
Geschwin- digkeiten	1 mile h	1 Knoten	$1\frac{ft}{s}$	1 ft min		
<u>m</u> s	0,4470	0,5144	0,3048	5,080 · 10 ⁻³		
Druck		1 in Hg	1 ft H ₂ 0	1 in H ₂ O		
bar	65,95 · 10 ⁻³	33,86 · 10 ⁻³	29,89 · 10 ⁻³	2,491 · 10 ⁻³		
Energie, Arbeit	1 HPh	1 BTU	1 PCU			
J	2,684 · 10 ⁶	1,055 · 10 ³	1,90 · 10 ³			

Umrechnung von SI-Einheiten in engl./amerikanische Einheiten							
Länge	1 cm	1 m		1 m		1 km	1 km
	0,3937 in	3,280	3,2808 ft		5 yd	0,6214 mile (Landmeile)	0,5399 mile (Seemeile)
Gewichte	1 g	1 kg		1 kg		1 t	1 t
	15,43 grain	35,27	ounce	2,2046	ilb.	0,9842 long ton	1,1023 short ton
Fläche	1cm ²	1 m ²		1 m ²		1 m ²	1 km ²
	0,1550 sq.in	10,76	10,7639 sq.ft) sq.yd	0,2471 · 10 ⁻³ acre	0,3861 sq.mile
Volumen	1cm ³	11		1 m ³		1 m ³	1 m ³
	0,06102 cu.in	0,035	0,03531 cu.ft		cu.yd	264,2 gal (US)	219,97 gal (UK)
Kraft	1 N	1 N			1 N		1 N
	0,2248 lb	0,100 ton (l	3 · 10 ^{–3} JK)	long	0,1123 · 10 ⁻³ short ton (US)		7,2306 pdl (poundal)
Geschwin- digkeiten	1 m/s	1 m/s	3	1 m/s		1 m/s	
	3,2808 ft/s	196,0 ft/mir		1,944	Knoten	2,237 mile/h	
Druck	1 bar	1 bar		1 bar		1 bar	
	14,50 psi	29,53 in Hg		33,45	ft H ₂ O	401,44 in H ₂ 0	
Energie	1 J		1 J			1 J	
Arbeit	0,3725 · 10 ⁻⁶ H	Ph	0,947	8 · 10−3 E	BTU	0,5263 · 10 ⁻³ F	PCU