Geometrie Trigonometrie 1. Übung

Mathematik

Name:

Klasse:

Datum:

Blatt Nr.: 1 / 4 Ifd. Nr.:

Info: Das Längenverhältnis der Seiten bei einem entsprechenden Winkel wird folgendermaßen bezeichnet:

• Der **Sinus** (kurz: sin) eines Winkels ist das Längenverhältnis aus der Gegenkathete dieses Winkels und der Hypotenuse.

 $\sin \varphi = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$

$$\sin \alpha = \frac{a}{c}$$
; $\sin \beta = \frac{b}{c}$

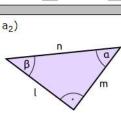
• Der **Kosinus** (kurz: cos) eines Winkels ist das Längenverhältnis aus der Ankathete dieses Winkels und der Hypotenuse.

 $\cos \varphi = \frac{Ankathete}{Hypotenuse}$

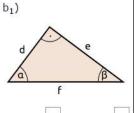
$$\cos \alpha = \frac{b}{c}$$
; $\cos \beta = \frac{a}{c}$

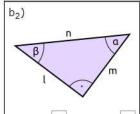
• Der **Tangens** (kurz: tan) eines Winkels ist das Längenverhältnis aus der Gegenkathete dieses Winkels und der Ankathete.

 $\tan \varphi = \frac{Gegenkathete}{Ankathete}$

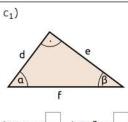

 $\tan \alpha = \frac{a}{b}$; $\tan \beta = \frac{b}{a}$

Trage die Buchstaben der Seiten so ein, dass die Sinus-, die Kosinus- und die Tangensangaben richtig sind.

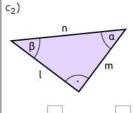



 $\sin \alpha = \frac{1}{\sin \beta} = \frac{1}{\sin \beta}$

Kosinus

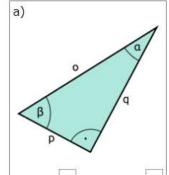


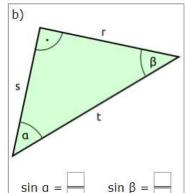
 $\cos a = \frac{1}{\cos \beta} = \frac{1}{\cos \beta}$



 $\cos a = \frac{1}{\cos \beta} = \frac{1}{\cos \beta}$

Tangens


 $\tan \alpha = - \tan \beta = -$


tan α = tan β =

Trage die Buchstaben der Seiten so ein, dass die Sinusangaben richtig sind.

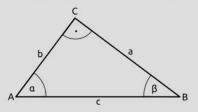
sin a =

 $\sin a = \frac{1}{3} \sin \beta = \frac{1}{3}$

Geometrie Trigonometrie 1. Übung

Mathematik

Name:


Klasse:

Datum:

Blatt Nr.: 2 / 4 Ifd. Nr.:

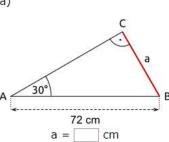
Info: Seitenlängen mit dem Sinus berechnen

Der Sinus eines Winkels ermöglicht es beim rechtwinkligen Dreieck, die Länge seiner Gegenkathete oder der Hypotenuse zu berechnen.

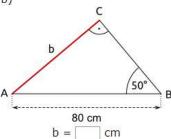
$$\sin a = \frac{a}{c}$$

$$\sin \beta = \frac{b}{c}$$

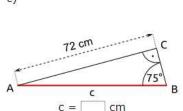
$$a = \sin a \cdot c$$

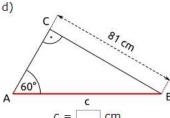

$$b = \sin \beta \cdot c$$

$$c = \frac{a}{\sin a}$$


$$c = \frac{b}{\sin \beta}$$

Berechne die Länge der roten Seiten und trage sie in das zugehörige Textfeld ein. Runde auf eine Nachkommastelle.


a)



b)

c)

Ein Dreieck hat die Winkel $\alpha = 65^{\circ}$ und $\gamma = 90^{\circ}$. Die Seite c = 33 cm lang. Wie lang ist die Seite a?

Geometrie Trigonometrie 1. Übung

Mathematik

Name:

Klasse:

Datum:

Blatt Nr.: 3 / 4 Ifd. Nr.:

Info: Einen Winkel im rechtwinkligen Dreieck mit Hilfe des Seitenverhältnisses von Gegenkathete zu Hypotenuse (Sinus) berechnen.

Teilt man die Gegenkathete eines Winkels durch die Hypotenuse , so erhält man seinen Sinuswert. Wird dieser Wert in die Umkehrfunktion des Sinus (Arkussinus) eingegeben, so erhält man die Größe des Winkel.

Beispiel:

- a = 3 cm; c = 6 cm; $\gamma = 90^{\circ}$
- $\frac{3}{6} = \sin a = 0.5$
- $a = 30^{\circ}$ (Arkussinus von 0,5)

Trage die Winkel zu den angegebenen Sinuswerten ein. Runde auf ganze Gradangaben.

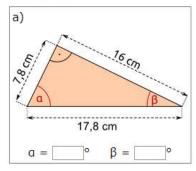
a)
$$\sin a = 0.3746$$
 b) $\sin a = 0.6428$

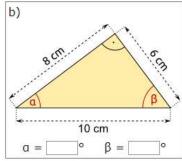
b)
$$\sin a = 0.6428$$

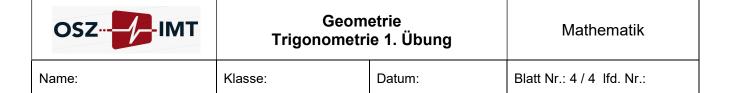
$$a =$$

$$a = \bigcirc$$
 $a = \bigcirc$

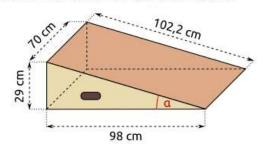
c)
$$\sin \beta = 0.9744$$
 d) $\sin \beta = 0.4848$ $\beta = \bigcirc$ °

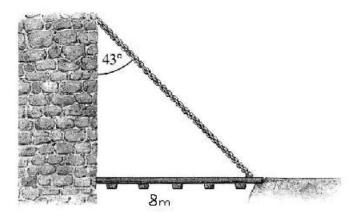

d)
$$\sin \beta = 0.4848$$


In einem Dreieck ist der Winkel γ rechtwinklig (90°). Runde auf ganze Gradangaben.


- a) Wie groß ist der Winkel a, wenn sin $\beta = 0.7314$?
- b) Wie groß ist der Winkel β , wenn sin a = 0,5736?

Antwort:
$$a = \circ; \beta = \circ$$


Bestimme die Winkel α und β . Runde auf eine Nachkommastelle.



Wie groß ist bei folgender Skaterrampe der Steigungswinkel a? Runde auf eine Nachkommastelle.

Antwort: Der Steigungswinkel a beträgt

Die Zugbrücke einer Burg ist 8m lang und hat zwischen der Mauer und der Kette einen Winkel von 43° . Wie lang muss die Kette sein, mit der man die Zugbrücke hinunter klappen kann?

In 50 m Länge soll ein Damm mit trapezförmigem Querschnitt aufgeschüttet werden. Unten soll er 18 m breit sein, oben 8 m. Der Böschungswinkel soll 50° betragen. Berechne die Dammhöhe.

Schwandt 04.11.20 Trigon_Einf_Ueb.Docx